(1)求椭圆的标准方程;
(2)求四边形ACBD面积的取值范围. x2y2?3232?【答案】(1)(2)?,?. ??1;
84?93?【解析】(1)由椭圆焦距为4,设F1??2,0?,F2?2,0?,连结EF1,设?EF1F2??, 则tan???e?bbc,又a2?b2?c2,得sin??,cos??,
aacF1F22csin90?1ac?????, 2aEF1|?|EF2sin??sin?90????b?cb?caaa222x2y2解得a?bc?c?b?c?2,a?8,所以椭圆方程为??1.
84(2)设直线l2方程:y??x?m,C?x1,y1?、D?x2,y2?, 4?x?x?m?x2y212?3?1???由?8,得3x2?4mx?2m2?8?0,所以?, 422m?8?y??x?m?xx??12?3?
2283?2??2?6,?6?,B?6,6?,得AB?由(1)知直线l1:y?x,代入椭圆得A??,
333?3??3?4?4?6,6?, 由直线l2与线段AB相交于点P,得m???3?3?216m242m?84?8x1x2?2???m2?12,
933CD?2x1?x2?2?x1?x2?2??而kl2??1与kl1?1,知l2?l1,?SACBD?1163AB?CD??m2?12, 294163?4??32??3232?6,6?,得?m2???,0?,所以?m2?12??,?, 由m???93?93??3??3??3232?四边形ACBD面积的取值范围?,?.
?93?