【答案】D
x25【解析】双曲线C1:?y2?1的离心率为,设F2?c,0?,双曲线C2一条渐近线方程为
24by?x,
a可得F2M?
bca2?b2?b,即有OM?c2?b2?a,
c51由S△OMF2?16,可得ab?16,即ab?32,又a2?b2?c2,且?,
a22解得a?8,b?4,c?45,即有双曲线的实轴长为16.故选D.
8.已知F是抛物线C:y?2x2的焦点,N是x轴上一点,线段FN与抛物线C相交于点M,
uuuuruuuur若2FM?MN,则FN?( )
A.1 【答案】D
1B.
25C.
25D.
8?1?【解析】由题意得点F的坐标为?0,?,设点M的坐标?x0,y0?,点N的坐标?a,0?,
?8?uuuur?r1?uuuu所以向量:FM??x0,y0??,MN??a?x0,?y0?,
8??由向量线性关系可得:3x0?a,2y0?代入抛物线方程可得:x0??11??y0,解得:y0?, 41266,则a??, 1245由两点之间的距离公式可得:FN?.故选D.
8x2y2x2y29.已知椭圆C1:2?2?1?a1?b1?0?与双曲线C2:2?2?1?a2?0,b2?0?有相同的焦点
a1b1a2b2F1,F2,
2e1,e2分别是C1和C2的离心率,点P是曲线C1与C2的一个公共点,若PF1?PF2,则4e12?e2的最小值为( )
9A.
2B.4
5C.
2D.9
【答案】A
【解析】由题意设焦距为2c,椭圆长轴长为2a1,双曲线实轴为2a2, 令P在双曲线的右支上,由双曲线的定义PF1?PF2?2a2,① 由椭圆定义PF1?PF2?2a1,②
2又∵PF1?PF2,∴PF1?PF2?4c,③ 22①2?②2,得PF1?PF2?4a1?4a2,④
2222
将④代入③,得a12?a22?2c2, ∴4e12?e22a124c2c252a2259?2?2??2???2?,故选A.
2a12a1a22a2222uuuruuuruuur10.已知F为抛物线C:y?4x的焦点,A,B,C为抛物线C上三点,当FA?FB?FC?0时,
称△ABC为“和谐三角形”,则“和谐三角形”有( ) A.0个 【答案】D
【解析】抛物线方程为y2?4x,A,B,C为曲线C上三点,
B.1个
C.3个
D.无数个
uuuruuuruuur当FA?FB?FC?0时,F为△ABC的重心,
用如下办法构造△ABC,连接AF并延长至D,使FD?1AF, 2当D在抛物线内部时,设D?x0,y0?,若存在以D为中点的弦BC, 设B?m1,n1?,C?m2,n2?, 则m1?m2?2x0,n1?n2?2y0,
n1?n2?kBC,
m1?m22?n?n?n1?4m1则?,两式相减化为?n1?n2?12?4,
2m1?m2??n2?4m2kBC?n1?n22?,所以总存在以D为中点的弦BC,所以这样的三角形有无数个,故选D.
m1?m2y0x2y2x2y211.已知双曲线?1:2?2?1?a?0,b?0?的左右焦点分别为F1,F2,椭圆?2:??134ab的离心率为e,直线MN过点F2与双曲线交于M,N两点,若cos?F1MN?cos?F1F2M,且F1MF1N?e,则双曲线?1的两条渐近线的倾斜角分别为( )
A.30?,150? 【答案】C 【解析】
B.45?,135? C.60?,120? D.15?,165?
由题cos?F1MN?cos?F1F2M,??F1MN??F1F2M,?MF1?F1F2?2c, 由双曲线的定义可得| MF2?MF1|?2a?2c?2a,
F1M1x2y24?31=e?,?NF1?4c,∵椭圆?2:??,∴?1的离心率为:e?F1N22234NF2?4c?2a,
在△MF1F2中,由余弦定理的cos?F1F2M?4c2??2c?2a??4c22?2c??2c?2a?22?c?a, 2ca2?c2?4ac, ?2c?2c?a?在△NF1F2中,由余弦定理可得:cos?F1F2N?4c2??4c?2a??16c22?2c??4c?2a?c?aa2?c2?4ac??0, ∵?F1F2M??F1F2N?π,?cos?F1F2M?cos?F1F2N?0,即2c2c?2c?a?整理得,
1设双曲线的离心率为e1,?3e12?7e1?2?0,解得e1?2或(舍).
3a2?b2b22?3a?b?4∴,,即?3.∴双曲线的渐近线方程为y??3x, 2aa∴渐近线的倾斜角为60?,120?.故选C.
x2y2212.已知P为椭圆??1上一个动点,过点P作圆?x?1??y2?1的两条切线,切点分
43uuuruuur别是A,B,则PA?PB的取值范围为( )
?3?A.?,???
?2?【答案】C
?356?B.?,?
?29?56??C.?22?3,?
9??D.?22?3,??
??【解析】如图,由题意设?APB?2?,则PA?PB?
1, tan?
uuuruuuruuuruuur∴PA?PB?PAPBcos2??11?cos2??cos2???cos2?,
1?cos2?tan2?uuuruuurt?1?t?22??1?t???3?2?1?t???3?22?3, 设cos2??t,则PA?PB?1?t1?t1?t当且仅当1?t?2,即t?1?2时等号成立,此时cos2??1?2. 1?t17又当点P在椭圆的右顶点时,sin??,∴cos2??1?2sin2??,
397uuuruuur9?7?56. 此时PA?PB最大,且最大值
7991?91?