ÈôM1½ÓÊÜËùÓжΣ¬Ôò½ÓÊÜ¡£¡±
Mʶ±ðA*¡£ËùÒÔͼÁé¿Éʶ±ðÓïÑÔÀà¶ÔÐǺÅÔËËãÊÇ·â±ÕµÄ¡£ d£®½»
M= ¡°¶ÔÓÚÊäÈëw£º
1) ÔÚÊäÈëwÉÏÔËÐÐM1¡£ÈôM1½ÓÊÜ£¬Ôòת(2)£»ÈôM1¾Ü¾ø£¬Ôò¾Ü¾ø¡£ 2) ÔÚwÉÏÔËÐÐM2¡£ÈôM2½ÓÊÜ£¬Ôò½ÓÊÜ£»ÈôM2¾Ü¾ø£¬Ôò¾Ü¾ø¡£¡± Mʶ±ðA?B¡£ËùÒÔͼÁé¿Éʶ±ðÓïÑÔÀà¶Ô²¢ÔËËã·â±Õ¡£ 3.21
1) ÓÉcmax?|c1|Öª£¬µ±|x|?1£¬ÔòÓûÅж¨²»µÈʽÃ÷ÏÔ³ÉÁ¢¡£ 2) µ±|x|>1ʱ£¬ÓÉ
c1xn + c2xn-1 + ?+ cnx + cn+1 = 0 ? c1x =£(c2 + ?+ cnx2-n + cn+1x1-n) ? |c1| |x| = |c2 + ?+ cnx2-n + cn+1x1-n|
< |c2| +?+ |cn||x|2-n + |cn+1| |x|1-n ? |c2| +??.|cn| + |cn+1||x0| ? n cmax
< (n + 1) cmax
? |x| < (n + 1) cmax / |c1|.
4.11 ÉèA={
Ö¤Ã÷£º¹¹ÔìDFA N£¬Ê¹L(N)={º¬ÆæÊý¸ö1µÄ×Ö·û´®}¡£¹¹ÔìͼÁé»ú
F=¡°¶ÔÓÚÊäÈë
1) ¹¹ÔìDFA D£¬Ê¹L(D)=L(M)¡ÉL(N)¡£ 2) ¼ì²âL(D)ÊÇ·ñΪ¿Õ¡£(EDFA¿ÉÅж¨¼ì²â)¡£ 3) ÈôL(D)£½?£¬Ôò½ÓÊÜ£»·ñÔò¾Ü¾ø¡£¡±
4.13 ¡°¼ì²éÒ»¸öCFGÊÇ·ñÅÉÉú1*ÖÐij¸ö´®ÎÊÌ⡱ ½â£º LX={
Ö¤Ã÷£º¹¹ÔìTM T
T£½¡°¶ÔÓÚÊäÈ룬AΪCFG
1) ½«ÖÕ½á·û¡°1¡±ºÍ¡°?¡±×ö±ê¼Ç¡£
2) ÖØ¸´ÏÂÁв½Ö裬ֱÖÁÎÞ¿É×ö±ê¼ÇµÄ±äÔª¡£ 3)
ÈçGÓйæÔòA?U1U2?Un£¬ÇÒU1U2?UnÖÐÿ¸ö·ûºÅ¶¼ÒÑ×ö¹ý±ê¼Ç£¬Ôò½«A×ö±ê¼Ç£¬ÆäÖÐUiΪÖÕ½á·û»ò·ÇÖÕ½á·û¡£
4) Èç¹ûÆðʼ±äԪûÓб»±ê¼ÇÔò¾Ü¾ø£¬·ñÔò½ÓÊÜ¡£¡± TÅж¨LX¡£
5.7Ö¤Ã÷£ºÈç¹ûAÊÇͼÁé¿Éʶ±ðµÄ£¬ÇÒA¡ÜmA£¬ÔòAÊÇ¿ÉÅж¨µÄ¡£ Ö¤£º¡ßA¡ÜmA?A¡ÜmA
ÇÒAΪͼÁé¿Éʶ±ðµÄ ¡àAҲΪͼÁé¿Éʶ±ðµÄ
¡àÓÉAºÍA¶¼ÊÇͼÁé¿Éʶ±ðµÄ¿ÉÖªAÊÇ¿ÉÅж¨µÄ. 5.1 Ö¤Ã÷EQCFGÊDz»¿ÉÅж¨µÄ¡£ ½â£ºÖ»ÐëÖ¤Ã÷ALLCFG¡ÜmEQCFG ¼´¿É¡£
¹¹ÔìCFG G1£¬Ê¹L(G1)=¡Æ¡£Éè¼Æ´ÓALLCFGµ½EQCFGµÄ¹éÔ¼º¯ÊýÈçÏ£º
F=¡°¶ÔÓÚÊäÈ룼G£¾£¬ÆäÖÐGÊÇCFG£º 1£©Êä³ö£¼G,G1£¾¡£¡±
Èô£¼G£¾?ALLCFG£¬Ôò
5.2Ö¤Ã÷EQCFGÊDz¹Í¼Áé¿Éʶ±ðµÄ¡£
Ö¤Ã÷£º×¢Òâµ½ACFG={
*
1) ¶ÔÓÚ×Ö·û´®S1, S2,?£¬Öظ´Èçϲ½Öè¡£ 2) 3)
¼ì²âSiÊÇ·ñ¿ÉÒÔÓÉGºÍHÅÉÉú¡£
ÈôGºÍHÖÐÓÐÒ»¸öÄÜÅÉÉúw£¬¶øÁíÒ»¸ö²»ÄÜ£¬Ôò½ÓÊÜ¡£¡±
Fʶ±ðEQCFGµÄ²¹¡£
5.4 Èç¹ûA?mBÇÒBÊÇÕýÔòÓïÑÔ£¬ÕâÊÇ·ñÔ̺×ÅAÒ²ÊÇÕýÔòÓïÑÔ£¿ÎªÊ²Ã´£¿ ½â£º·ñ¡£ÀýÈ磺
¶Ô·ÇÕýÔòÓïÑÔA={0n1n|n?0}ºÍÕýÔòÓïÑÔB={0}£¬¿ÉÒÔ¹¹ÔìÒ»¸ö¿É¼ÆË㺯ÊýfʹµÃ£º
?0,w?0n1nf(w)=?nn?1,w?01
ÓÚÊÇw?A?f(w)?B,¹ÊA?mB¡£
5.24Ö¤Ã÷£º¶ÔÈÎÒâ×Ö·û´®x£¬Áîf1(x)=0x¡£ÔòÓÐx?ATM?f1(x)=0x¡ÊJ¡£¼´ÓÐATM¡Üm J¡£½øÒ»²½ÓÐATM?mJ¡£ÓÉATMͼÁé²»¿Éʶ±ðÖªJͼÁé²»¿Éʶ±ð¡£ ¶ÔÈÎÒâ×Ö·û´®x£¬Áîf2(x)=1x¡£ÔòÓÐx?ATM?f2(x)=1x¡ÊJ¡£¼´ÓÐATM?mJ¡£ÓÉATMͼÁé²»¿Éʶ±ðÖªJͼÁé²»¿Éʶ±ð