OFDM在4G中地应用 下载本文

实用文档

率。

(2)编码技术:分组编码的方法既可以绝对地降低PAPR,也具有一定的纠错能力。OFDM信号的复包络依赖于发送数据信号序列的非周期自相关函数旁瓣。如果旁瓣小,则信号的起伏就小,即PAPR小,就可以得到准恒定(Quasi-Constant)幅度信号。因此,需要寻找自相关函数旁瓣小的发送信号序列。Golay二进制序列(即Complementary)就是一种旁瓣小的序列。即使是它扩展到多相位序列,也仍然满足旁瓣小的特性。可以证明,Golay序列的PAPR不超过3dB。基于互余序列的分组码的基木思想就是避免使用PAPR高的码子。通过采用基于互余序列的分组码,在PAPR的控制在3-6dB情况下,系统可以得到很大的编码增益,并改善了error-floor性能。

(3)扰码技术:采用扰码技术,使生成的OFDM的互相关性尽量为0,从而使OFDM的PAPR减少。这里的扰码技术可以对生成的OFDM信号的相位进行重置,典型的有PTS和SLM。

3训练序列和导频及信道估计技术

接收端使用差分检测时不需要信道估计,但仍需要一些导频信号提供初始的

相位参考,差分检测可以降低系统的复杂度和导频的数量,但却损失了信噪比。尤其是在OFDM系统中,系统对频偏比较敏感,所以一般使用相干检测。 在系统采用相干检测时,信道估计是必须的。此时可以使用训练序列和导频作为辅助信息,训练序列通常用在非时变信道中,在时变信道中一般使用导频信号。在OFDM系统中,导频信号是时频二维的。为了提高估计的精度,可以插入连续导频和分散导频,导频的数量是估计精度和系统复杂的折衷。导频信号之间的间隔取决于信道的相干时间和相干带宽,在时域上,导频的间隔应小于相干时间;在频域上,导频的间隔应小于相干带宽。在实际应用中,导频模式的设计要根据具体情况而定。

(四)不同类型的OFDM

采用OFDM技术的一个主要障碍是现在存在许多不兼容版本且没有统一标准。目前主要的OFDM技术有以下几种。

文案大全

实用文档

4.1 V-OFDM

由宽带产品供应商Iospan公司和Cisco系统公司开发V-OFDM(Vector OFDM)。该系统使用空间分集技术,利用多重信号发射以提高带宽,通过使用特殊天线和信号处理来实现。天线接收信号再进行信号处理,使延迟信号合并变为更高的数据流。V-OFDM大多用于固定无线城域网(MAN)。

4.2 W-OFDM

目前,W-OFDM(Wideband OFDM)已经正式通过IEEE组织的认证,成为IEEE 802.16a标准(无线城域网的国际通用标准)物理层调制技术。OFDM论坛称Wi-LAN公司的W-OFDM应该是标准版本。W-OFDM使用的不是紧压缩正交载波,而是在正交信道之间引入额外频率空间。通过在W-OFDM数据的每一帧插入一些已知数据计算出传输信道的“估计”(这个“估计”就是理论中的“传输函数”),并利用这个“估计”来纠正选频衰落的影响。这能更好地减少干扰,并且对OFDM传输中存在的一些问题(如抖动)有了更高的容忍度。无线互联网商务服务供应商在城域网中使用W-OFDM,因为城域网中的收发信机往往是在室外并需要更高的容错能力。

4.3 F-OFDM

F-OFDM(Flash OFDM)是1998年由Bell实验室发明,后来由朗讯科技下设的Flarion公司推出商用化产品。相对V-OFDM、W-OFDM而言,它的特点是能在移动环境下工作,是一种移动宽带接入Internet解决方案。F-OFDM在OFDM中引入快速跳频扩频技术,该技术在传输中不断变换频率,即在每个时隙中可以根据跳频图样来选择每个用户所用的子载波频率。这种系统在比OFDM所需频带更宽的频带上传输信号,将信号能量扩展到更宽频谱上,提高了信号的抗干扰能力。且由于高速切换子载波,因而相邻节点可以使用相同频率的子载波,可提高频率利用效率。该技术与GSM后向兼容,可以为蜂窝电话用户和其他移动用户提供宽带服务。

文案大全

实用文档

4.4 MIMO-OFDM

MIMO(Multiple Input Multiple Output,多输入多输出)-OFDM是一种将OFDM和MIMO相结合的技术。MIMO是该项技术的核心,是在收发两端使用多个天线,每个收发天线对之间形成一个MIMO子信道,若各发射接收天线间的通道响应独立,则MIMO系统可以创造多个并行空间信道。通过这些并行空间信道独立地传输信息使得数据传输率得以提高。而OFDM技术有极好的抗衰落特性,通过在OFDM传输系统中采用阵列天线实现空间分集。通过结合MI-MO和OFDM技术的优点,利用时间、频率和空间三种分集技术,使无线系统对噪声、干扰、多径的容限大大增加,而且大大提高频谱利用率和业务覆盖范围[5]。为了进一步提高系统传输速率,使用OFDM技术的无线通信网需要增加载波的数量,而这种方法会造成系统复杂度的增加,并增大系统的带宽,这对今天的带宽受限和功率受限的无线通信网系统就不太适合了。而MIMO技术能在不增加带宽的情况下成倍地提高通信系统的容量和频谱利用率,因此将MIMO技术与OFDM技术相结合是适应下一代无线网络发展要求的。因此,MIMO和OFDM的结合成为第四代移动通信系统中有效对抗频率选择性衰落、提高数据传输速率、增大系统容量的关键技术。

4.5 Multiband OFDM

谈M-OFDM时,要说道实质的问题,比如,它为什么使用多带oFDM技术,使用M-OFDM 技术解决什么问题、与传统OFDM有什么区别,等,诸如此类的问题多多考虑一下。

Multiband OFDM联盟由50多个世界知名企业所组成,手机芯片制造商德州仪器(TI)是该联盟的发起人之一。Samsung,Panasonic及Nokia都是该联盟的成员。Multiband OFDM联盟称,与W-OFDM相比,该技术产品的数据将更为强大,其中包括能轻松处理视频流的能力。

文案大全

实用文档

(五)OFDM的特点 1、OFDM技术的优点

(1)在窄带带宽下也能够发出大量的数据。OFDM技术能同时分开至少1000个数字信号,而且在干扰的信号周围可以安全运行的能力将直接威胁到目前市场上已经开始流行的CDMA技术的进一步发展壮大的态势,正是由于具有了这种特殊的信号“穿透能力”使得OFDM技术深受欧洲通信营运商以及手机生产商的喜爱和欢迎。

(2)OFDM技术能够持续不断地监控传输介质上通信特性的突然变化,由于通信路径传送数据的能力会随时间发生变化,所以OFDM能动态地与之相适应,并且接通和切断相应的载波以保证持续进行成功的通信。该技术可以自动地检测到在传输介质下,哪一个特定的载波存在高的信号衰减或干扰脉冲,然后采取合适的调制措施来使指定频率下的载波进行成功通信。

(3)OFDM技术的最大优点是对抗频率选择性衰落或窄带干扰。在单载波系统中,单个衰落或干扰能够导致整个通信链路失败,但是在多载波系统中,仅仅有很小一部分载波会受到干扰。对这些子信道还可以采用纠错码来进行纠错。OFDM技术特别适合使用在高层建筑物、居民密集和地理上突出的地方以及将信号散播的地区。高速的数据传播及数字语音广播都希望降低多径效应对信号的影响。

(4)OFDM技术可以有效地对抗信号波形间的干扰,适用于多径环境和衰落信道中的高速数据传输。当信道中因为多径传输而出现频率选择性衰落时,只有落在频带凹陷处的子载波以及其携带的信息受影响,其他的子载波未受损害,因此系统总的误码率性能要好得多。

(5)OFDM技术通过各个子载波的联合编码,具有很强的抗衰落能力。OFDM技术本身已经利用了信道的频率分集,如果衰落不是特别严重,就没有必要再加时域均衡器。通过将各个信道联合编码,可以使系统性能得到提高。

(6)OFDM技术可以使用硬件模块集成基于IFFT/FFT的算法,通过这种方式实现的OFDM系统的运行速度,主要取决于硬件电路的运行速度,同时也简化了系统实现的复杂程度。

文案大全

实用文档

(7)OFDM技术的信道利用率很高,这一点在频谱资源有限的无线环境中尤为重要;当子载波个数很大时,系统的频谱利用率趋于2baud/Hz。

2、OFDM技术的缺陷

建议将缺陷写得详细一些。

(1)对频偏和相位噪声比较敏感。OFDM技术区分各个子信道的方法是利用各个子载波之间严格的正交性。频偏和相位噪声会使各个子载波之间的正交特性恶化,仅仅1%的频偏就会使信噪比下降30dB。因此,OFDM系统对频偏和相位噪声比较敏感。

(2)功率峰值与均值比(PAPR)大,导致射频放大器的功率效率较低。与单载波系统相比,由于OFDM信号是由多个独立的经过调制的子载波信号相加而成的,这样的合成信号就有可能产生比较大的峰值功率,也就会带来较大的功率峰值与均值比,简称峰均值比。对于包含N个子信道的OFDM系统来说,当N个子信道都以相同的相位求和时,所得到的峰值功率就是均值功率的N倍。当然这是一种非常极端的情况,通常OFDM系统内的峰均值不会达到这样高的程度。高峰均值比会增大对射频放大器的要求,导致射频信号放大器的功率效率降低。 (3)负载算法和自适应调制技术会增加系统复杂度。负载算法和自适应调制技术的使用会增加发射机和接收机的复杂度,并且当终端移动速度高于30km每小时,自适应调制技术就不是很适合了。

文案大全