ËùÒÔº¯Êýf(x)ÔÚ(0,e)Éϵ¥µ÷µÝÔö£¬ÔÚ(e,??)Éϵ¥µ÷µÝ¼õ£¬
ÒòΪf(e)?1?0£¬f??1?e?e????e?0£¬ ËùÒÔº¯Êýf(x)ÔÚ(0,e)ÉÏ´æÔÚÒ»¸öÁãµã£» µ±x?(e,??)ʱ£¬f(x)?lnxx?0ºã³ÉÁ¢£¬ ËùÒÔº¯Êýf(x)ÔÚ(e,??)Éϲ»´æÔÚÁãµã. ×ÛÉϵú¯Êýf(x)ÔÚ(0,??)ÉÏ´æÔÚΨһһ¸öÁãµã. £¨2£©Óɺ¯Êýf(x)?lnxxnÇóµ¼£¬µÃf'(x)?1?nlnxxn?1(x?0)£¬ 11ÓÉf'(x)?0£¬µÃ0?x?en£»ÓÉf'(x)?0£¬µÃx?en£¬ 11ËùÒÔº¯Êýf(x)ÔÚ(0,en)Éϵ¥µ÷µÝÔö£¬ÔÚ(en,??)Éϵ¥µ÷µÝ¼õ£¬11Ôòµ±x?enʱ£¬º¯Êýf(x)ÓÐ×î´óÖµf(x)max?f(en)?1ne£» Óɺ¯Êýg(x)?ex(x?n)exxn(x?0)Çóµ¼£¬µÃg'(x)?xn?1(x?0)£¬ÓÉg'(x)?0µÃx?n£»ÓÉf'(x)?0µÃ0?x?n.
ËùÒÔº¯Êýg(x)ÔÚ(0,n)Éϵ¥µ÷µÝ¼õ£¬ÔÚ(n,??)Éϵ¥µ÷µÝÔö£¬
nÔòµ±x?nʱ£¬º¯Êýg(x)ÓÐ×îСֵg(x)?g(n)???e?min?n??£»
1ÒòΪ?n?N*£¬º¯Êýf(x)µÄ×î´óÖµf(en)?1ne?1£¬ ¼´º¯Êýf(x)?lnxxnÔÚÖ±Ïßy?1µÄÏ·½£¬ g(x)?ex¹Êº¯Êýxn(x?0)ÔÚÖ±Ïßl£ºy?1µÄÉÏ·½£¬
nËùÒÔg(x)?g(n)???e?min?n???1£¬½âµÃn?e.
ËùÒÔnµÄÈ¡Öµ¼¯ºÏΪA?{1,2}.
9
n£¨3£©¶Ô?x1,x2?(0,??)£¬f(x1)?g(x2)µÄ×îСֵµÈ¼ÛÓÚg(x)min?f(x)max???e?1?n???ne£¬ µ±n?1ʱ£¬g(x)1min?f(x)max?e?e£» µ±n?2ʱ£¬g(x)min?f(x)max?e24?12e£» ÒòΪ??1?21?e2(4?e)?2?e?e?????e?4?2e???4e?0£¬ ËùÒÔf(xe21)?g(x2)µÄ×îСֵΪ4?12e?e3?24e. 22.½âÎö£º£¨1£©Ð±ÂÊΪ2ʱ£¬Ö±ÏßlµÄÆÕͨ·½³ÌΪy?1?2(x?1)£¬ ¼´y?2x?3. ¢Ù
½«??x?2?2cost?2sintÏûÈ¥²ÎÊýt£¬»¯ÎªÆÕͨ·½³ÌµÃ(x?2)2?y?4?(y?4)2?4£¬¢Ú
ÔòÇúÏßC1ÊÇÒÔC1(2,4)ΪԲÐÄ£¬2Ϊ°ë¾¶µÄÔ²£¬ Ô²ÐÄC4?4?3351(2,4)µ½Ö±ÏßlµÄ¾àÀëd?5?5?2£¬ ¹ÊÖ±ÏßlÓëÇúÏߣ¨Ô²£©C1Ïཻ.
£¨2£©C2µÄÖ±½Ç×ø±ê·½³ÌΪx2?y2?4x?0£¬
ÓÉ???x2?y2?4x?8y?16?0?x?2??x2?y2?4x?0£¬½âµÃ?£¬ ?y?2ËùÒÔC???1ÓëC2µÄ½»µãµÄ¼«×ø±êΪ??22,4??. 23.½âÎö£º£¨1£©¡ßf(x)?ax?1?ax?ax?1?a(x?1)?a£¬x?1£¬a?0£¬ ¡àf(x)?3a£¬¼´ÓÐ3a?15£¬½âµÃa?5.
£¨2£©ÓÉÓÚx?5?x?1?(x?5)?(x?1)?4£¬µ±ÇÒ½öµ±?5?x??1ʱµÈºÅ³ÉÁ¢£¬ ¡àg(x)?x?5?x?1µÄ×îСֵΪ4.
10