⑵ 线性表的顺序存储结构优于链接存储结构。 【解答】错。两种存储结构各有优缺点。
⑶ 设p,q是指针,若p=q,则*p=*q。 【解答】错。p=q只能表示p和q指向同一起始地址,而所指类型则不一定相同。
⑷ 线性结构的基本特征是:每个元素有且仅有一个直接前驱和一个直接后继。 【解答】错。每个元素最多只有一个直接前驱和一个直接后继,第一个元素没有前驱,最后一个元素没有后继。
⑸ 在单链表中,要取得某个元素,只要知道该元素所在结点的地址即可,因此单链表是随机存取结构。 【解答】错。要找到该结点的地址,必须从头指针开始查找,所以单链表是顺序存取结构。
4.请说明顺序表和单链表各有何优缺点,并分析下列情况下,采用何种存储结构更好些。 ⑴ 若线性表的总长度基本稳定,且很少进行插入和删除操作,但要求以最快的速度存取线性表中的元素。 ⑵ 如果n个线性表同时并存,并且在处理过程中各表的长度会动态发生变化。 ⑶ 描述一个城市的设计和规划。 【解答】顺序表的优点:① 无需为表示表中元素之间的逻辑关系而增加额外的存储空间;② 可以快速地存取表中任一位置的元素(即随机存取)。顺序表的缺点:① 插入和删除操作需移动大量元素;② 表的容量难以确定;③ 造成存储空间的“碎片”。 单链表的优点:① 不必事先知道线性表的长度;② 插入和删除元素时只需修改指针,不用移动元素。单链表的缺点:① 指针的结构性开销;② 存取表中任意元素不方便,只能进行顺序存取。 ⑴ 应选用顺序存储结构。因为顺序表是随机存取结构,单链表是顺序存取结构。本题很少进行插入和删除操作,所以空间变化不大,且需要快速存取,所以应选用顺序存储结构。 ⑵ 应选用链接存储结构。链表容易实现表容量的扩充,适合表的长度动态发生变化。 才能适应不断发展的需要。而顺序表的插入、删除的效率低,故不合适。 5.算法设计
⑴ 设计一个时间复杂度为O(n)的算法,实现将数组A[n]中所有元素循环右移k个位置。 【解答】算法思想请参见主教材第一章思想火花。下面给出具体算法。
分析算法,第一次调用Reverse函数的时间复杂度为O(k),第二次调用Reverse函数的时间复杂度为O(n-k),第三次调用Reverse函数的时间复杂度为O(n),所以,总的时间复杂度为O(n)。
⑵ 已知数组A[n]中的元素为整型,设计算法将其调整为左右两部分,左边所有元素为奇数,右边所有元素为偶数,并要求算法的时间复杂度为O(n)。 【解答】从数组的两端向中间比较,设置两个变量i和j,初始时i=0,j=n-1,若A[i]为偶数并且A[j]为奇数,则将A[i]与A[j]交换。具体算法如下: 分析算法,两层循环将数组扫描一遍,所以,时间复杂度为O(n)。
⑶ 试编写在无头结点的单链表上实现线性表的插入操作的算法,并和带头结点的单链表上的插入操作的实现进行比较。 【解答】参见2.2.3。
⑶ 应选用链接存储结构。因为一个城市的设计和规划涉及活动很多,需要经常修改、扩充和删除各种信息,
⑷ 试分别以顺序表和单链表作存储结构,各写一实现线性表就地逆置的算法。 【解答】顺序表的逆置,即是将对称元素交换,设顺序表的长度为length,则将表中第i个元素与第length-i-1个元素相交换。具体算法如下:
单链表的逆置请参见2.2.4算法2-4和算法2-6。
⑸ 假设在长度大于1的循环链表中,即无头结点也无头指针,s为指向链表中某个结点的指针,试编写算法删除结点s的前趋结点。 【解答】利用单循环链表的特点,通过指针s可找到其前驱结点r以及r的前驱结点p,然后将结点r删除,如图2-11所示,具体算法如下:
⑹ 已知一单链表中的数据元素含有三类字符:字母、数字和其他字符。试编写算法,构造三个循环链表,使每个循环链表中只含同一类字符。 【解答】在单链表A中依次取元素,若取出的元素是字母,把它插入到字母链表B 中,若取出的元素是数字,则把它插入到数字链表D中,直到链表的尾部,这样表B,D,A中分别存放字母、数字和其他字符。具体算法如下:
⑺ 设单链表以非递减有序排列,设计算法实现在单链表中删去值相同的多余结点。
【解答】从头到尾扫描单链表,若当前结点的元素值与后继结点的元素值不相等,则指针后移;否则删除该后继结点。具体算法如下:
⑻ 判断带头结点的双循环链表是否对称。 【解答】设工作指针p和q分别指向循环双链表的开始结点和终端结点,若结点p和结点q的数据域相等,则工作指针p后移,工作指针q前移,直到指针p和指针q指向同一结点(循环双链表中结点个数为奇数),或结点q成为结点p的前驱(循环双链表中结点个数为偶数)。如图2-12所示。
学习自测及答案
1. 已知一维数组A采用顺序存储结构,每个元素占用4个存储单元,第9个元素的地址为144,则第一个元素的地址是( )。 A 108 B 180 C 176 D 112 【解答】D
2.在长度为n的线性表中查找值为x的数据元素的时间复杂度为: ( )。 A O(0) B O(1) C O(n) D O(n2) 【解答】C
3.在一个长度为n的顺序表的第i(1≤i≤n+1)个元素之前插入一个元素,需向后移动( )个元素,删除第i(1≤i≤n)个元素时,需向前移动( )个元素。 【解答】n-i+1,n-i
4.在单链表中,除了头结点以外,任一结点的存储位置由( )指示。 【解答】其前趋结点的指针域 5.当线性表采用顺序存储结构时,其主要特点是( )。 【解答】逻辑结构中相邻的结点在存储结构中仍相邻
6.在双链表中,每个结点设置了两个指针域,其中一个指向( )结点,另一个指向( )结点。 【解答】前驱,后继
7.设A是一个线性表(a1, a2, …, an),采用顺序存储结构,则在等概率的前提下,平均每插入一个元素需要移动的元素个数为多少若元素插在ai与ai+1之间(1≤i≤n)的概率为 ,则平均每插入一个元素所要移动的元素个数又是多少 【解答】 , 。
8.线性表存放在整型数组A[arrsize]的前elenum 个单元中,且递增有序。编写算法,将元素x插入到线性表的适当位置上,以保持线性表的有序性,并且分析算法的时间复杂度。 【解答】本题是在一个递增有序表中插入元素x,基本思路是从有序表的尾部开始依次取元素与x比较,若大于x,此元素后移一位,再取它前面一个元素重复上述步骤;否则,找到插入位置,将x插入。具体算法如下:
9. 已知单链表中各结点的元素值为整型且递增有序,设计算法删除链表中所有大于mink且小于maxk的所有元素,并释放被删结点的存储空间。 【解答】因为是在有序单链表上的操作,所以,要充分利用其有序性。在单链表中查找第一个大于mink的结点和第一个小于maxk的结点,再将二者间的所有结点删除。 10.设单循环链表L1,对其遍历的结果是:x1, x2, x3,…, xn-1, xn。请将该循环链表拆成两个单循环链表L1和L2,使得L1中含有原L1表中序号为奇数的结点且遍历结果为:x1, x3,… ;L2中含有原L1表中序号为偶数的结点且遍历结果为:… , x4, x2。 【解答】算法如下:
第 3 章特殊线性表——栈、队列和串
课后习题讲解
1. 填空
⑴ 设有一个空栈,栈顶指针为1000H,现有输入序列为1、2、3、4、5, 经过push,push,pop,push,pop,push,push后,输出序列是( ),栈顶指针为( )。 【解答】23,1003H
⑵ 栈通常采用的两种存储结构是( );其判定栈空的条件分别是( ),判定栈满的条件分别是( )。 【解答】顺序存储结构和链接存储结构(或顺序栈和链栈),栈顶指针top= -1和top=NULL,栈顶指针top等于数组的长度和内存无可用空间
⑶( )可作为实现递归函数调用的一种数据结构。 【解答】栈 【分析】递归函数的调用和返回正好符合
后进先出性。
⑷ 表达式a*(b+c)-d的后缀表达式是( )。 【解答】abc+*d- 【分析】将中缀表达式变为后缀表达式有一个技巧:将操作数依次写下来,再将算符插在它的两个操作数的后面。
⑸ 栈和队列是两种特殊的线性表,栈的操作特性是( ),队列的操作特性是( ),栈和队列的主要区别在于( )。 【解答】后进先出,先进先出,对插入和删除操作限定的位置不同 ⑹ 循环队列的引入是为了克服( )。 【解答】假溢出
⑺ 数组Q[n]用来表示一个循环队列,front为队头元素的前一个位置,rear为队尾元素的位置,计算队列中元素个数的公式为( )。 【解答】(rear-front+n)% n 【分析】也可以是(rear-front)% n,但rear-front的结果可能是负整数,而对一个负整数求模,其结果在不同的编译器环境下可能会有所不同。
⑻ 用循环链表表示的队列长度为n,若只设头指针,则出队和入队的时间复杂度分别是( )和( )。 【解答】O(1),O(n) 【分析】在带头指针的循环链表中,出队即是删除开始结点,这只需修改相应指针;入队即是在终端结点的后面插入一个结点,这需要从头指针开始查找终端结点的地址。 ⑼ 串是一种特殊的线性表,其特殊性体现在( )。 【解答】数据元素的类型是一个字符 \,\。 2. 选择题
⑴ 若一个栈的输入序列是1,2,3,…,n,输出序列的第一个元素是n,则第i个输出元素是( )。 A 不确定 B n-i C n-i-1 D n-i+1 【解答】D 【分析】此时,输出序列一定是输入序列的逆序。
⑵ 设栈S和队列Q的初始状态为空,元素e1、e2、e3、e4、e5、e6依次通过栈S,一个元素出栈后即进入队列Q,若6个元素出队的顺序是e2、e4、e3、e6、e5、e1,则栈S的容量至少应该是( )。 A 6 B 4 C 3 D 2 【解答】C 【分析】由于队列具有先进先出性,所以,此题中队列形同虚设,即出栈的顺序也是e2、e4、e3、e6、e5、e1。
⑶ 一个栈的入栈序列是1,2,3,4,5,则栈的不可能的输出序列是( )。 A 54321 B 45321 C 43512 D 12345 【解答】C 【分析】此题有一个技巧:在输出序列中任意元素后面不能出现比该元素小并且是升序(指的是元素的序号)的两个元素。
⑷ 设计一个判别表达式中左右括号是否配对的算法,采用( )数据结构最佳 A 顺序表 B 栈 C 队列 D 链表 【解答】B 【分析】每个右括号与它前面的最后一个没有匹配的左括号配对,因此具有后进先出性。 ⑸ 在解决计算机主机与打印机之间速度不匹配问题时通常设置一个打印缓冲区,该缓冲区应该是一个( )结构。 A 栈 B队列 C 数组 D线性表 【解答】B 【分析】先进入打印缓冲区的文件先被打印,因此具有先进先出性。
⑹ 一个队列的入队顺序是1,2,3,4,则队列的输出顺序是( )。 A 4321 B 1234 C 1432 D 3241 【解答】B 【分析】队列的入队顺序和出队顺序总是一致的。
⑺ 栈和队列的主要区别在于( )。 A 它们的逻辑结构不一样 B 它们的存储结构不一样 C 所包含的运算不一样 D 插入、删除运算的限定不一样 【解答】D
⑽ 两个串相等的充分必要条件是( )。 【解答】长度相同且对应位置的字符相等 【分析】例如\
【分析】栈和队列的逻辑结构都是线性的,都有顺序存储和链接存储,有可能包含的运算不一样,但不是主要区别,任何数据结构在针对具体问题时包含的运算都可能不同。
⑻ 设数组S[n]作为两个栈S1和S2的存储空间,对任何一个栈只有当S[n]全满时才不能进行进栈操作。为这两个栈分配空间的最佳方案是( )。 A S1的栈底位置为0,S2的栈底位置为n-1 B S1的栈底位置为0,S2的栈底位置为n/2 C S1的栈底位置为0,S2的栈底位置为n D S1的栈底位置为0,S2的栈底位置为1 【解答】A 【分析】两栈共享空间首先两个栈是相向增长的,栈底应该分别指向两个栈中的第一个元素的位置,并注意C++中的数组下标是从0开始的。
⑼ 设有两个串p和q,求q在p中首次出现的位置的运算称作( )。 A 连接 B 模式匹配 C 求子串 D 求串长 【解答】B 3. 判断题
⑴ 有n个元素依次进栈,则出栈序列有(n-1)/2种。 【解答】错。应该有 种。
⑵ 栈可以作为实现过程调用的一种数据结构。 【解答】对。只要操作满足后进先出性,都可以采用栈作为辅助数据结构。
⑶ 在栈满的情况下不能做进栈操作,否则将产生“上溢”。 【解答】对。
⑷ 在循环队列中,front指向队头元素的前一个位置,rear指向队尾元素的位置,则队满的条件是front=rear。 【解答】错。这是队空的判定条件,在循环队列中要将队空和队满的判定条件区别开。
⑸ 空串与空格串是相同的。 【解答】错。空串的长度为零,而空格串的长度不为0,其长度是串中空格的个数。
4. 设有一个栈,元素进栈的次序为A,B,C,D,E,能否得到如下出栈序列,若能,请写出操作序列,若不能,请说明原因。 ⑴ C,E,A,B,D ⑵ C,B,A,D,E 【解答】⑴不能,因为在C、E出栈的情况下,A一定在栈中,而且在B的下面,不可能先于B出栈。⑵可以,设I为进栈操作,O为入栈操作,则其操作序列为IIIOOOIOIO。
5. 举例说明顺序队列的“假溢出”现象。 【解答】假设有一个顺序队列,如图3-6所示,队尾指针rear=4,队头指针front=1,如果再有元素入队,就会产生“上溢”,此时的“上溢”又称为“假溢出”,因为队列并不是真的溢出了,存储队列的数组中还有2个存储单元空闲,其下标分别为0和1。
6. 在操作序列push(1)、push(2)、pop、push(5)、push(7)、pop、push(6)之后,栈顶元素和栈底元素分别是什么(push(k)表示整数k入栈,pop表示栈顶元素出栈。) 【解答】栈顶元素为6,栈底元素为1。其执行过程如图3-7所示。
7. 在操作序列EnQueue(1)、 EnQueue(3)、 DeQueue、EnQueue(5)、EnQueue(7)、DeQueue、EnQueue(9)之后,队头元素和队尾元素分别是什么(EnQueue(k)表示整数k入队,DeQueue表示队头元素出队)。 【解答】队头元素为5,队尾元素为9。其执行过程如图3-8所示。
8.空串和空格串有何区别串中的空格符有何意义空串在串处理中有何作用 【解答】不含任何字符的串称为空串,其长度为零。仅含空格的串称为空格串,它的长度为串中空格符的个数。串中的空格符可用来分隔一般的字符,便于人们识别和阅读,但计算串长时应包括这些空格符。空串在串处理中可作为任意串的子串。
9. 算法设计 ⑴ 假设以不带头结点的循环链表表示队列,并且只设一个指针指向队尾结点,但不设头指针。试设计相应的入队和出队的算法。 【解答】出队操作是在循环链表的头部进行,相当于删除开始结点,而入队操作是在循环链表的尾部进行,相当于在终端结点之后插入一个结点。由于循环链表不带头结点,需要处理空表的特殊情况。 入队算法如下: 出队算法如下:
⑵ 设顺序栈S中有2n个元素,从栈顶到栈底的元素依次为a2n,a2n-1,…,a1,要求通过一个循环队列重新排列栈中元素,使得从栈顶到栈底的元素依次为a2n,a2n-2,…,a2,a2n-1,a2n-3,…,a1,请设计算法实现该操作,要求空间复杂度和时间复杂度均为O(n)。 【解答】操作步骤为: ① 将所有元素出栈并入队; ② 依次将队列元素出队,如果是偶数结点,则再入队,如果是奇数结点,则入栈; ③ 将奇数结点出栈并入队;
④ 将偶数结点出队并入栈; ⑤ 将所有元素出栈并入队; ⑥ 将所有元素出队并入栈即为所求。 ⑶ 用顺序存储结构存储串S,编写算法删除S中第 i个字符开始的连续j个字符。 【解答】先判断串S中要删除的内容是否存在,若存在,则将第i+j-1之后的字符前移j个位置。算法如下:
⑷ 对于采用顺序存储结构的串S,编写一个函数删除其值等于ch的所有字符。 【解答】从后向前删除值为ch的所有元素,这样所有移动的元素中没有值为ch的元素,能减少移动元素的次数,提高算法的效率。算