最新湘教版八年级下数学教案完整版 下载本文

益阳市九中

教 案

八年级下册

第一章

课题

第1章直角三角形形

§1.1直角三角形的性质和判定(Ⅰ)

主备教师

使用教师

1、 掌握“直角三角形的两个锐角互余”定理。

教学目的

2、 掌握“有两个锐角互余的三角形是直角三角形”定理。

3、 掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。 4、巩固利用添辅助线证明有关几何问题的方法。教学重点 直角三角形斜边上的中线性质定理的应用。

教学难点 直角三角形斜边上的中线性质定理的证明思想方法。教学方法

观察、比较、合作、交流、探索.

教学课时

一个课时

教学过程 一、复习提问:(1)什么叫直角三角形?

(2)直角三角形是一类特殊的三角形,除了具备三角形的性

质外,还具备哪些性质?

二、新授

1 请学生看图形:

1、提问:∠A与∠B有何关系?为什么?

2、归纳小结:定理1:直角三角形的两个锐角互余。 3、巩固练习: 练习1、

(1)在直角三角形中,有一个锐角为520

,那么另一个锐角度数 (2)在Rt△ABC中,∠C=900

,∠A -∠B =300

,那么∠

个性化设计

(一)直角三角形性质定理

A= ,∠B= 。

练习2 在△ABC中,∠ACB=90,CD是斜边AB上的高,那么,(1)与∠B互余的角有 (2)与∠A相等的角有 。(3)与∠B相等的角有 。 (二)直角三角形的判定定理1

1、 提问:“ 在△ABC中,∠A +∠B =90那么△ABC是直角三角形吗?” 2、 利用三角形内角和定理进行推理

3、 归纳:有两个锐角互余的三角形是直角三角形

练习3:若 ∠A= 60 ,∠B =30,那么△ABC是 三角形。 (三)直角三角形性质定理2

1、实验操作: 要学生拿出事先准备好的直角三角形的纸片 (l)量一量斜边AB的长度。(2)找到斜边的中点,用字母D表示。

(3)画出斜边上的中线。(4)量一量斜边上的中线的长度

让学生猜想斜边上的中线与斜边长度之间有何关系? 归纳:直角三角形斜边上的中线等于斜边的一半。 三、巩固训练:

练习4: 在△ABC中, ∠ACB=90 °,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB= _________。

练习5: 已知:∠ABC=∠ADC=90O,E是AC中点。 求证:(1)ED=EB。

(2)∠EBD=∠EDB。 (3)图中有哪些等腰三角形?

练习6 已知:在△ABC中,BD、CE分别是边AC、AB上的高, M是BC的中点。如果连接DE,取DE的中点 O,那么MO 与DE有什么样的关系存在?

0

0

00