天津工业大学2011届本科生毕业设计(论文)
computer control. The system of vehicle test bed is complicated. In order to facilitate research, simulates nothing but the system of monowheel test-bed, and assumes that the parameters of all other wheels are same to the wheel simulated.
The change of vehicle speed on the low adhesion coefficient (μl =0.25) road is simulated. As the actual speed is calculated under the ideal conditions, the simulation speed has been less than the actual speed.
Because ABS has been ineffective in the case of lower wheel speed, the difference between the simulation speed and the actual speed may not be credited with the test error. It is on the maximum error for 1.7. on the basis of the simulation road of low adhesion coefficient.
The change of vehicle speed on the simulation road of high adhesion coefficient (μh =0.75) is simulated.
The difference is on the maximum error for 1.7%. It is showed that the error is more than that of simulation condition of low adhesion coefficient, but the curves of vehicle speed simulated are in the same trend.
By the analysis, the change of vehicle speed simulated is on the maximum error for 3.1%. Because there is a lot of randomness in the vehicle detection, the scope of this error is in the people's acceptance. Thus, it is feasible to simulate vehicle inertia mass by the method of the electrical simulation on the basis of ABS test bed, and this method provides a theoretical basis for the later manufacturing.
Simulation speed is not much of the volatility curve, simulation result is satisfactory, because the fuzzy control is of a good robustness. The performance of the fuzzy controller designed is verified by the experimental result, and so does the feasibility that fuzzy control can be applied to ABS test-bed.
V. CONCLUSIONS
Based on the idea of the glide lamellas of different adhesion coefficient simulating roads of that, the method of electricity simulation is put forward in order to make the no level simulation of vehicle inertia mass, the method can solve the problem of the simulation of vehicle inertia mass.
The new method of ABS performance testing on the basis of fuzzy controller is put forward, the control model of nonlinear system is set up, and the simulation and experimental study are carried out.
32
天津工业大学2011届本科生毕业设计(论文)
REFERENCES
[1] WANG Jianqiang, GAO Wei. A study on correlation between the results of bench-testing and road-testing for rolling resistance of tires[J].Automotive Engineering, 2003, 25(6): 613-616. (in Chinese)
[2] CARLOS E A. Technical overview of brake performance testing for original equipment and after market industries in the US and European markets[R]. Detroit: Link Testing Laboratories, 2005.
[3] LIU Shaolin, XU Cangsu, HUANG Dezhong. Design of the vehicle ABS rolling drum inert testing bench[J].Mechanical & Electrical Engineering Magazine, 2004, 21(6): 16-20. (in Chinese) [4] Jeremy Broughton, Chris Baughan. The effectiveness of antilock braking systems in reducing accidents in Great Britain[J]. Accident Analysis & Prevention, 2002, 34, 347-355.
[5] ZHANG Naiyao, YAN Ping-fan. Neural networks and fuzzy control[M].Beijing. Tsinghua University Press, 1998, 168-198. (in Chinese)
[6] ZHANG Huaguang, HE Xiqin. Fuzzy adaptive control theory and applications[M]. Beijing, Beijing University of Aeronautics and Astronautics Press, 2002, 361-395. (in Chinese)
[7] FANG Daoxing, YU Yueqing, CHEN Wei. Position control of 2R under actuated robot based on fuzzy control[J].Chinese Journal of Mechanical Engineering, 2008, 44(1): 144-159. (in Chinese)
[8] ZHANG Libin, SU Jian, SHAN Hongmei. Reliability analysis and enhancement of automobile detecting system[J]. Machine Tool & Hydraulics, 2007, 35(4), 217-220. (in Chinese)
[9] Jerry Banks, John S, Carson, Barry L, Nelson, David M.Nicol. Discrete-event system simulation [M]. Upper Saddle River: Prentice Hall International Series in Industrial and Systems Engineering. 2001, 368-369.
[10] WANG Weiping. Discrete-event system modeling & simulation[M]. Beijing, Science Press, 2007, 152-161. (in Chinese)
33
天津工业大学2011届本科生毕业设计(论文)
2.外文翻译:
基于惯性质量模拟的汽车ABS 检测方法
张立斌, 苏 建, 单洪颖, 苏丽俐, 单红梅
(1.吉林大学交通学院,长春130022;2.吉林大学机械科学与工程学院,长春130022)
11211摘要: 基于用不同附着系数的滑移层模拟不同附着系数路面的思想, 提出了用输出扭矩可变的电磁滑差离合器来模拟不同附着系数路面的整车ABS 台架检测方法及无级模拟汽车惯量的电模拟方法, 设计了基于ABS 检测台的双输入单输出的模糊控制器。仿真分析结果表明, 该方法是正确和有效的。 关键词: 车辆工程;ABS;可变附着系数;电模拟
中图分类号: U 472. 2 文献标识码: A 文章编号: 1671-5497(2009)Sup.1-0115-04
目前对于台架的ABS 性能检测, 传统的反力式制动试验台已不能满足要求, 不能实现汽车惯性质量模拟, 也无法实现模拟汽车运行工况条件下的ABS 性能评价。ABS 检测是不可缺少的一项, 开发汽车ABS 检测试验台具有非常重要的理论及实际意义。因此, 针对ABS 性能评价, 本文对台架检测的可变附着系数模拟及汽车惯量模拟方法进行了研究。
1. 整车ABS 性能台架检测原理
本文首先对汽车ABS 性能评价试验台的结构进行了原理设计, 如图1 所示。试验台的计算机系统主要由惯量模拟控制器和道路附着系数控制器两部分构成。
当负载转速在一定范围内变化时, 道路附着系数控制器根据力矩传感器信号, 自动调整激磁线圈中的激磁电流, 从而控制电磁滑差离合器输出的扭矩, 实现对不同附着系数道路的模拟。
图1 汽车ABS试验台的原理结构
34
天津工业大学2011届本科生毕业设计(论文)
惯量模拟控制器采用电模拟方法模拟机械惯量, 根据车辆试验台系统中运动部件的力、速度信号调整系统, 即进行速度补偿, 使试验系统的动力特性与具有大惯性飞轮系统一致, 即转速变化与具有相应惯性飞轮的转速变化一致。汽车惯性质量模拟由飞轮模拟和电模拟两部分构成。完全采用飞轮模拟, 模拟精度低, 且成本高, 无法在汽车综合性能检测线中推广。
原理设计中采用调速范围宽、调速精度高的变频调速异步电动机, 采用铸铁滚筒模拟地面, 磁电式转速传感器及GBZ03B360 的光电轴编码器。图2所示为ABS 检测台的结构图。需要模拟的动能为:
E = Ef + Ed + El + Ez + Ec
式中: E 为汽车动能;Ef 为飞轮动能;Ed 为步进电机动能;El 为电磁滑差离合器动能;Ec 为测速滚筒动能;Ez 为支撑滚筒动能。
图2 ABS检测试验台结构图
根据车轮力学分析, 车轮所受的制动力为:
Fz = ( Tl-Tfg )/R1-Trg/R2
式中: R1、R2 分别为支撑滚筒、测速滚筒半径, m;Fz为汽车对车轮的作用力, N;Tfg、Trg分别为支撑滚筒、测速滚筒惯性阻力矩, N.m;Tl为电磁滑差离合器输出扭矩, N.m。
汽车模拟质量减速度与试验台飞轮减速度成线性关系, 采用变频调速电机对飞轮速度进行实时控制, 从而实现在试验台上对汽车模拟质量的速度模拟。根据加速度定理得:
?f?Fz/(mR1k)
式中: ?f为飞轮角减速度;m 为汽车质量;k 为系统的传动比。 飞轮角速度控制公式为:
?n??n?1??n?1?t
35