图二、512KHz正弦载波信号生成电路
2)实验基带信号7位伪随机码子电路(同实验一)如下:
图三、基带信号1110010生成子电路
3)实验中同、反相子电路图:
图四、同相子电路
9
图五、反相子电路
4)512KHz载波信号、同、反相信号、基带信号:
图六、512KHz载波、同、反相信号、基带信号波形图
其中,图一的最上方为512KHz载波波形,中间为同相信号波形,最下方为反相信号波形。
5)已调信号波形:
图七、已调信号波形
10
? 解调电路
1)解调部分电路如下:
图八、PSK解调电路
以上电路中,解调运用的仍是4066芯片的开关特性来实现:将已调信号接入4066中并用512KHz的信号源方波“识别”出已调信号中的同反相512KHz频率的正弦信号,然后经过两个相同截至频率的低通滤波器(理论值为32KHz,即与生成伪随机码的信号源频率一致),滤出含有基带信号的“混合”波形。参考“混合”波形的幅值设置一个合理的判决门限电压值(本实验中给的是1v),与所得的“混合”信号一起接入LM311比较器中比较,最后得到解调信号。
电路中,LM311比较器处接了下拉电阻(R25),作用是使解调信号可正常输出解调波形。另解调低通滤波器电路及最终所得的解调信号波形见下图:
11
图九、解调低通滤波器电路
图十、PSK解调信号与基带信号波形对比
观察波形结果发现,信号得到了较好的解调,基本恢复了基带信号(上方为基带信号,下方为解调信号)。但解调信号与基带信号间存在一定的延时,这与FSK实验中一样,可能是由电路中的某些器件引起的,如:电路中4066、LM311芯片的触发可能导致信号延时;滤波电路中,电阻和电容也可能对相位产生影响,使信号延时。总体来说,PSK对基带信号的调制和解调结果是比较合理的,实验具有一定的准确性。
四、实验心得体会:
本实验是PSK调制与解调的综合性设计实验,在上个FSK调制解调设计实验的基础上,完成本实验相对简单了一些。实验的核心内容在于:运用4066和LM311芯片实现已调信号的解调。首先充分利用了4066芯片的开关特性,“识别”出已调信号中同反相的两个载波信号并经过低通滤波得到初解调信号。通过参考初解调信号的幅值给定一个合理的判决门限电压值,然后与初解调信号一起接入LM311芯片进行信号比较,得到解调信号。实验完成后,我思考的问题是,通过给定一个判决门限值与初解调信号比较是怎样实现信号解调的。我的理解是:接入4066解调芯片的信号都是含有512KHz频率的信号,故开关电路一直都会有信号流过。但是已调信号的相位跳变点正是直接携带基带信号信息的,当这个跳变点遇上512KHz的方波时,经过开关电路即会产生幅值的前后变化,故我们可以设置一个处于幅值变化之间的某个电压值作为判决门限值,这样即可实现同反相载波的区分,解调出基带信号的。本实验的综合和性较强,且电路成分也比较多,宜采用子电路方法简化电路以减少因电路间干扰而出现错误。实验难点同FSK一样,在于设计产生载波信号和解调部分的滤波器的设计,这直接影响到最后是否可成功解调出信号。总之实验下来让我更加熟练了multisim仿真操作、不同截至频率滤波器的调节技巧以及PSK调制与解调理论知识的理解。实践结合起理论知识,使得我们更清晰的理解理论并提高了动手操作能力,受益略多。
12