图3 ICL7107芯片引脚图
图4 ICL7107和外围器件连接图
ICL7107芯片的引脚图如图3所示,它与外围器件的连接图如图4所示。图4中它和
4
数码管相连的脚以及电源脚是固定的,所以不加详述。芯片的第32脚为模拟公共端,称为COM端;第36脚Vr+和35脚Vr-为参考电压正负输入端;第31脚IN+和30脚IN-为测量电压正负输入端; Cint和Rint分别为积分电容和积分电阻,Caz为自动调零电容,它们与芯片的27、28和29相连,用示波器接在第27脚可以观测到前面所述的电容充放电过程,该脚对应实验仪上示波器接口Vint;电阻R1和C1与芯片内部电路组合提供时钟脉冲振荡源,从40脚可以用示波器测量出该振荡波形,时钟频率的快慢决定了芯片的转换时间(因为测量周期总保持4000个Tcp不变)以及测量的精度。下面我们来分析一下这些参数的具体作用:
Rint为积分电阻,它是由满量程输入电压和用来对积分电容充电的内部缓冲放大器的输出电流来定义的,对于ICL7107,充电电流的常规值为Iint=4uA,则Rint=满量程/4uA。所以在满量程为200mV,即参考电压Vref=0.1V时,Rint=50K,实际选择47K电阻;在满量程为2V,即参考电压Vref=1V时,Rint=500K,实际选择470K电阻。Cint=T1*Iint/Vint,一般为了减小测量时工频50HZ干扰,T1时间通常选为0.1S ,具体下面再分析,这样又由于积分电压的最大值Vint=2V,所以:Cint=0.2uF,实际应用中选取0.22uF。
对于ICL7107,38脚输入的振荡频率为:f0=1/(2.2*R1*C1),而模数转换的计数脉冲频率是f0的4倍,即Tcp=1/(4*f0),所以测量周期T=4000*Tcp=1000/f0,积分时间(采样时间)T1=1000*Tcp=250/fo。所以fo的大小直接影响转换时间的快慢,频率过快或过慢都会影响测量精度和线性度。一般情况下,为了提高在测量过程中抗50HZ工频干扰的能力,应使A/D转换的积分时间选择为50HZ工频周期的整数倍,即T1=n*20ms,考虑到线性度和测试效果,我们取T1=0.1m(n=5),这样T=0.4S,f0=40kHZ,A/D转换速度为2.5次/秒。由T1=0.1=250/f0,若取C1=100pF,则R1≈112.5KΩ。 3、用ICL7107A/D转换器进行常见物理参量的测量
图5 图6 (1)直流电压测量的实现(直流电压表)
Ⅰ: 当参考电压Vref=100mV时,Rint=47KΩ。此时采用分压法实现测量0~2V的直流电压 ,电路图见图5。
5
Ⅱ:直接使参考电压Vref=1V,Rint=470KΩ来测量0~2V的直流电压,电路图如图6。 (2)直流电流测量的实现(直流电流表)
直流电流的测量通常有两种方法,第一种为欧姆压降法,如图7所示,即让被测电流流过一定值电阻Ri,然后用200mV的电压表测量此定值电阻上的压降Ri*Is(在Vref=100mV时,保证Ri*Is≤200mV就行),由于对被测电路接入了电阻,因而此测量方法会对原电路有影响,测量电流变成Is’=R0*Is/(R0+Ri),所以被测电路的内阻越大,误差将越小。第二种方法是由运算放大器组成的I-V变换电路来进行电流的测量,此电路对被测电路的无影响,但是由于运放自身参数的限制,因此只能够用在对小电流的测量电路中,所以在这里就不再详述。
图7
(3)电阻值测量的实现(欧姆表)
Ⅰ:当参考电压选择在100mV时,此时选择Rint=47KΩ,测试的接线图如图8所示,图中Dw是提供测试基准电压,而Rt 是正温度系数(PTC)热敏电阻,既可以使参考电压低于100mV,同时也可以防止误测高电压时损坏转换芯片,所以必需满足Rx=0时,Vr≤100mV。由前面所讲述的7107的工作原理,存在:
Vr=(Vr+)–(Vr-)=Vd*Rs/(Rs+Rx+Rt) (6) IN=(IN+)–(IN-)=Vd*Rx/(Rs+Rx+Rt) (7) 由前述理论N2/N1=IN/Vr有:
Rx=(N2/N1)*Rs (8) 所以从上式可以得出电阻的测量范围始终是0~2RsΩ。
Ⅱ: 当参考电压选择在1V时,此时选择Rint=470KΩ,测试电路可以用图9实现,此电路仅供有兴趣的同学参考,因为它不带保护电路,所以必需保证Vr≤1V。
在进行多量程实验时(万用表设计实验),为了设计方便,我们的参考电压都将选择为100mV,除了比例法测量电阻我们使Rint=470KΩ和在进行二极管正向导通压降测量时也使Rint=470KΩ并且加上1V的参考电压。
6
图8 图9
二、数字万用表设计
常用万用表需要对交直流电压、交直流电流、电阻、三极管hFE和二极管正向压降的测量等,图10为万用表测量基本原理图。下面我们主要讲讲提到的几种参数的测量:
图10数字万用表基本原理图
本实验使用的DH6505型数字电表原理及万用表设计实验仪,它的核心是由双积分式模数A/D转换译码驱动集成芯片ICL7107和外围元件、LED数码管构成。为了同学们能更好的理解其工作原理,我们在仪器中预留了8个输入端,包括2个测量电压输入端(IN+ 、IN-)、2个基准电压输入端(Vr+、Vr-)、3个小数点驱动输入端(dp1、dp2和dp3)以及模拟公共端(COM)。
7