À³ÖÝÒ»ÖÐ2010¼¶¸ßÈýµÚÈý´ÎÖÊÁ¿¼ì²âÊýѧÎÄ ÏÂÔØ±¾ÎÄ

À³ÖÝÒ»ÖÐ2010¼¶¸ßÈýµÚÈý´ÎÖÊÁ¿¼ì²âÊýѧ£¨ÎĿƣ©ÊÔÌâ´ð°¸

Ò»¡¢Ñ¡ÔñÌ⣺

ABBCB CCBDC CC ¶þ¡¢Ìî¿ÕÌ⣺

13.{x|-2

17.½â£º£¨1£©ÒÑÖªº¯Êý¼´f(x)?1?Áî?2?2k??2x?3?212sin2x,?T?2?2??3?433 15.1 16.?¢Ü

£¬¡­¡­¡­¡­¡­¡­¡­¡­3·Ö

?k?(k?Z),

?2k?(k?Z),Ôò?¼´º¯Êýf(x)µÄµ¥µ÷µÝ¼õÇø¼äÊÇ[2?B?k?,43?4?k??x??k?](k?Z);¡­¡­¡­¡­¡­¡­6·Ö

2£¨2£©ÓÉÒÑÖªy=sinx+sinxcosx+cosxsinx+cosx22=tanx+tanx+1tanx+122£¬¡­¡­¡­¡­¡­¡­9·Ö

?µ±tanx?2ʱ£¬y?2?2?12?122?75. ¡­¡­¡­¡­¡­¡­¡­¡­12·Ö

18.£¨1£©Ö¤Ã÷£ºÔÚ?ABCÖУ¬?AC?2BC?4,?ACB?60??AB?23 ?AB?BC?AC? ?AB?ÃæB1B1CC222AB?ÓÖ? B C ÓÉÒÑÖªAB?BB1A?BÃæ,A¹ÊBEBB1?BC?B

11?AÃæBEBBCC¡­¡­¡­¡­¡­¡­4·Ö

£¨2£©Ö¤Ã÷£ºÈ¡ACµÄÖеãM£¬Á¬½áC1M,FMÔÚ?ABCÖУ¬FM//AB£¬

?Ö±ÏßFM//ÃæABEÔÚ¾ØÐÎACCAÖУ¬E¡¢M¶¼ÊÇÖеã?CM//AE 111?Ö±Ïß

C1M//ÃæABE¹ÊC1F//ÃæAEB 8·Ö

ÓÖ

?C1M?FM?M?ÃæABE//ÃæFMC1£¨3£©ÔÚÀâACÉÏÈ¡ÖеãG£¬Á¬½áEG¡¢BG£¬ÔÚBGÉÏÈ¡ÖеãO£¬

Á¬½áPO£¬ÔòPO//BB1£¬?µãPµ½ÃæBB1C1CµÄ¾àÀëµÈÓÚOµ½Æ½ÃæBB1C1CµÄ¾àÀë¡£ ¹ýO×÷OH//AB½»BCÓëH£¬ÔòOH?Æ½ÃæBB1C1C,Ôڵȱß?BCGÖпÉÖª

3233CO?BG,?BO?1ÔÚRt?BOCÖУ¬¿ÉµÃOH??VP?B1C1F?¡­¡­¡­¡­12·Ö

19.£¨±¾Ð¡ÌâÂú·Ö12·Ö£©

- 5 -

£¨1£©½â£ºf'(x)?(ax?a?2)ex£¬¡­¡­¡­¡­¡­¡­2·ÖÓÉÒÑÖªµÃf'(1)=0,½âµÃa=1. µ±a=1ʱ£¬f(x)=(x-2)ex£¬ÔÚx=1´¦È¡µÃ¼«Ð¡Öµ£¬ËùÒÔa=1.¡­¡­¡­¡­4·Ö £¨2£©Ö¤Ã÷£ºÓÉ£¨1£©Öª£¬f(x)?(x?2)ex,f'(x)?(x?1)ex. µ±x?[0,1]ʱ£¬f'(x)?(x?1)ex?0,f(x)ÔÚÇø¼ä[0£¬1]µ¥µ÷µÝ¼õ£» µ±x?[1,2]ʱ£¬f'(x)?(x?1)ex?0,f(x)ÔÚÇø¼ä(1£¬2]µ¥µ÷µÝÔö£» ËùÒÔÔÚÇø¼ä[0£¬2]ÉÏ£¬f(x)µÄ×îСֵΪf(1)=-e.¡­¡­¡­¡­¡­¡­8·Ö ÓÖf(0)=-2,f(2)=0,

ËùÒÔÔÚÇø¼ä[0£¬2]ÉÏ£¬f(x)µÄ×î´óֵΪf(2)=0.¡­¡­¡­¡­10·Ö ¶ÔÓÚx1,x2?[0,2]£¬ÓÐf(x1)?f(x2)?fmax(x)?fmin(x). ËùÒÔf(x1)?f(x2)?0?(?e)?e.¡­¡­¡­¡­¡­¡­¡­¡­12·Ö 20.½â£º£¨1£©?f'(x)?3x2,?k?3?ÇÐÏß·½³ÌΪ3x?y?1£½0 ÓÖÒòΪÇÐÏß¹ýµã(an?1,an),?3an?1?an?1?0,¼´3an?1?an?1

an?1?,?1?3(an?1?12)?an?122?1£¬

13an?2¼´ÊýÁÐ?an???a1?12?23?11?q=Êǹ«±ÈΪµÄµÈ±ÈÊýÁÐ ?22??12?16,?an?12?11n?1?()£¬ 63?an??sn?1?()?2321n1£½3?14?3nn?n21111n(?2?????n)?23332

21.£¨±¾Ð¡ÌâÂú·Ö12·Ö£©

½â£º£¨1£©Ö±ÏßPQбÂÊΪ1,ÉèÖ±ÏßLµÄ·½³ÌΪy=x+c,ÆäÖÐc=ÉèP(x1,y1),Q(x2,y2)£¬ÔòP,QÁ½µã×ø±êÂú×ã·½³Ì×é

?y?x?c2?2ac?222222222£¬ »¯¼òµÃ(a?b)x?2acx?a(c?b)?0£¬Ôòx1?x2?2?xy2a?b?2?2?1b?a

- 6 -

a-b.¡­¡­¡­¡­2·Ö

22x1x2?ac?ba?b22222.

2ÒòΪ£¬ËùÒÔ|PQ|?434ab2222|x2?x1|?2[(x1?x2)?4x1x2]?43a.¡­¡­¡­¡­¡­¡­6·Ö

µÃ

a?a?b,¹Êa?2b22£¬

ËùÒÔÍÖÔ²µÄÀëÐÄÂÊe?ca?a?ba22?22.¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­8·Ö

2£¨2£©ÉèPQµÄÖеãΪN(x0,y0),ÓÉ£¨1£©Öªx0?x1?x22??aca?b22??23c,y0?x0?c?c3.

ÓÉ|MP|=|MQ|µÃkMN=-1¡­¡­¡­¡­¡­¡­10·Ö ¼´

y0+1x0=-1,µÃc=3,´Ó¶øa=32,b=3£¬¹ÊÍÖÔ²µÄ·½³ÌΪ

x218+y92=1¡­¡­¡­¡­¡­¡­

12·Ö

22.£¨±¾Ð¡ÌâÂú·Ö14·Ö£© £¨1£©½â£ºÓÉ

59=e=2a-ba2220=1-ba22,µÃba=23

ÒÀÌâÒâ?MB1B2ÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬´Ó¶øb=2£¬¹Êa=3.

x2ËùÒÔÍÖÔ²CµÄ·½³Ì

9+y42=1.

£¨2£©½â£ºÉèA(x1,y1)£¬B (x2,y2)£¬Ö±ÏßABµÄ·½³ÌΪx=my+2. ½«Ö±ÏßABµÄ·½³ÌÓëÍÖÔ²CµÄ·½³ÌÁªÁ¢£¬ ÏûÈ¥xµÃ(4m+9)y+16my-20=0.

-16m4m+9222ËùÒÔy1+y2=,y1y2=-204m+92

ÈôPFƽ·Ö?APBÔòÖ±ÏßPA,PBµÄÇãб½Ç»¥²¹£¬ ËùÒÔkPA+kPB=0. ÉèP(a,0),ÔòÓÐ

y1x1-a+y2x2-a=0.

½«x1=my1+2,x2=my2+2´úÈëÉÏʽ£¬

- 7 -

ÕûÀíµÃ

2my1y2+(2-a)(y1+y2)(my1+2-a)(my2+2-a)=0£¬

ËùÒÔ2my1y2+(2-a)(y1+y2)=0

-16m4m+92½«y1+y2=,y1y2=-204m+92´úÈëʽ£¬

ÕûÀíµÃ(?2a?9)?m?0.

ÓÉÓÚÉÏʽ¶ÔÈÎÒâʵÊým¶¼³ÉÁ¢£¬ËùÒÔa=992.

×ÛÉÏ£¬´æÔÚ¶¨µãp(,0),ʹPMƽ·Ö?APB.

2

- 8 -