MATLAB ÔÚÊýѧ½¨Ä£ÖеÄÓ¦Óà - ͼÎÄ ÏÂÔر¾ÎÄ

ÓÖ¶Ô P'£¨x,y£©£¬ÓÐ

x?X?rsin(¦È?¦Õ) y?Y?rcos(???)

10'ÆäÖÐ??arctan(f(x0))£¬???1?f'(x)dx¡£ËùÒÔ£¬ÊÎÎïµÄÔ˶¯¹ì¼£·½³ÌΪ

R0x?x0?Rf'(x0)1?f(x0)'2x?rsin(???)

y?f(x0)?R1?f(x0)'2?rcos(???)

¢ÙÈ¡ f(x)=0 ,ÔòÓÐ??x0R,??0£¬ÕâʱÊÎÎïµÄÔ˶¯¹ì¼£·½³ÌΪ:

x?x0?rsin(x0R) y?R?rcos(x0R)

¢ÚÈ¡f(x)?0.2?0.2x £¬ÔòÓÐ

21 ??Rx0?01?(?0.4x)2dx,??arctan(?0.4x0)

ÕâʱÊÎÎïµÄÔ˶¯¹ì¼£·½³ÌΪ£º

x?x0?20.4Rx01?(?0.4x0)R2?rsin(???)

y?0.2?0.2x0?1?(?0.4x0)2?rcos(???)

¢ÛÈ¡f(x)?0.3sinx£¬ÔòÓÐ

10 ???1?(0.3cosx)2dx,??arctan(0.3cosx0)

R0ÕâʱÊÎÎïµÄÔ˶¯¹ì¼£·½³ÌΪ£º

xx?x0?0.3Rcosx01?(0.3cosx0)2?rsin(???)

y?0.3sinx0?

³ÌÐòÈçÏ£º

clear;

%µÚ£¨1£©ÀàÇé¿öµÄʵÏÖ

x0=0:0.01:2;R=0.1;r=0.075;

R1?(0.3cosx0)2?rcos(???)

x1=x0-r*sin(x0/R); %¼ÆËãf(x)=0shipµãµÄÔ˶¯¹ì¼£ y1=R-r*cos(x0/R); subplot(3,1,1);

plot(x1,y1,x0,0); %»æÖÆÔ˶¯¹ì¼£ÇúÏߺÍf(xÇúÏß) xlabel('x1');ylabel('y1');grid on %µÚ£¨2£©ÀàÇé¿öµÄʵÏÖ

x0=-1:0.01:1;R=0.1;r=0.1;

y0=0.2-0.2*x0.^2; %¼ÆËã·ÃæÇúÏß fai=atan(-0.4*x0); %Çó?

int=inline('sqrt(1+(-0.4*x).^2)'); %¶¨Òå?µÄ»ý·Öº¯Êý for k=1:length(x0)

theta1(k)=quad(int,0,x0(k))/R; %µ÷ÓÃquadµÄº¯ÊýÇó? end

x2=x0+R*0.4*x0./sqrt(1+(-0.4*x0).^2)-r*sin(theta1-fai); %Ô˶¯¹ì¼£·½³Ì y2=y0+R./sqrt(1+(-0.4*x0).^2)-r*cos(theta1-fai); subplot(3,1,2);

plot(x2,y2,x0,y0) %»æÖÆÔ˶¯¹ì¼£ÇúÏߺÍf(x)ÇúÏß xlabel('x2');ylabel('y2');grid on %µÚ£¨3£©ÀàÇé¿öµÄʵÏÖ

x0=0:0.01:10;R=0.1;r=0.075;

y0=0.3*sin(x0); %¼ÆËã·ÃæÇúÏß fai=atan(0.3*cos(x0)); %Çó?

int=inline('sqrt(1+(0.3*cos(x)).^2)'); %¶¨Òå?µÄ»ý·Öº¯Êý

for k=1:length(x0)

theta2(k)=quad(int,0,x0(k))/R; %µ÷ÓÃquadµÄº¯ÊýÇó?end

%pµãÔ˶¯¹ì¼£·½³Ì

x3=x0-0.3*R*cos(x0)./sqrt(1+(0.3*cos(x0)).^2)-r*sin(theta2-fai); y3=0.3*sin(x0)+R./sqrt(1+(0.3*cos(x0)).^2)-r*cos(theta2-fai); subplot(3,1,3); plot(x3,y3,x0,y0)

xlabel('x3');ylabel('y3');grid on

ÔËÐгÌÐòµÃÈçÏÂͼËùʾµÄÇúÏßͼ¡£

ͼ 3 ×ÔÐгµÊÎÎïÔËÐÐÇúÏß

Àý 3 ¹ã¸æ·ÑÓÃÓëЧӦ¡£Ä³×°ÊβÄÁϹ«Ë¾ÓûÒÔÿͰ 2 ÔªµÄ¼ÛÇ®¹º½øÒ»Åú²ÊÆá¡£Ò»°ãÀ´Ëµ£¬Ëæ×ŲÊÆáÊÛ¼ÛµÄÌá¸ß£¬Ô¤ÆÚÏúÊÛÁ¿½«¼õÉÙ£¬²¢¶Ô´Ë½øÐÐÁ˹ÀË㣬¼û±í 1¡£

±í 1 ÊÛ¼ÛÓëÔ¤ÆÚÏúÊÛÁ¿

ÊÛ¼Û£¨Ôª£© Ô¤ÆÚÏúÊÛÁ¿£¨Í°£© ÊÛ¼Û£¨Ôª£© Ô¤ÆÚÏúÊÛÁ¿£¨Í°£© 2.00 41000 2.50 38000 3.00 34000 3.50 32000 4.00 29000 4.50 28000 5.00 25000 5.50 22000 6.00 20000 ΪÁ˾¡¿ìÊÕ»Ø×ʽ𲢻ñµÃ½Ï¶àµÄÓ®Àû£¬×°ÊβÄÁϹ«Ë¾´òËã×ö¹ã¸æ¡£Í¶ÈëÒ»¶¨µÄ¹ã¸æ·Ñºó£¬ÏúÊÛÁ¿½«ÓÐÒ»¸öÔö³¤£¬¿ÉÓÉÏúÊÛÔö³¤Òò×ÓÀ´±íʾ¡£ÀýÈ磬ͶÈë40000ÔªµÄ¹ã¸æ·Ñ£¬ÏúÊÛÔö³¤Òò×ÓΪ 1.95£¬¼´ÏúÊÛ½«ÊÇÔ¤ÆÚÏúÊÛÁ¿µÄ 1.95 ±¶¡£¸ù¾Ý¾­Ñ飬¹ã¸æ·ÑÓëÏúÊÛÔö³¤Òò×ӵĹØϵ¼û±í 2 ¡£

±í 2 ¹ã¸æ·ÑÓëÏúÊÛÔö³¤Òò×Ó

¹ã¸æ·Ñ£¨Ôª£© ÏúÊÛÔö³¤Òò×Ó ¹ã¸æ·Ñ£¨Ôª£© ÏúÊÛÔö³¤Òò×Ó 0 1.00 10000 1.40 20000 1.70 30000 1.85 40000 1.95 50000 2.00 60000 1.95 70000 1.80 ÏÖÔÚµÄÎÊÌâÊÇ×°ÊβÄÁϹ«Ë¾²ÉÈ¡ÔõÑùµÄÓªÏúÕ½ÂÔʹµÃÔ¤ÆÚµÄÀûÈó×î´ó£¿

Éè x ±íʾÊÛ¼Û£¨µ¥Î»£ºÔª£©£¬y ±íʾԤÆÚÏúÊÛÁ¿£¨µ¥Î»£ºÍ°£©£¬z ±íʾ¹ã¸æ·Ñ£¨µ¥Î»£ºÔª£©£¬k ±íʾÏúÊÛÔö³¤Òò×Ó¡£Í¶Èë¹ã¸æ·Ñºó£¬Êµ¼ÊÏúÊÛÁ¿¼ÇΪ s £¬»ñµÃµÄÀûÈó¼ÇΪ p£¨µ¥Î»£ºÔª£©¡£

Ô¤ÆÚÏúÊÛÁ¿ y ËæÊÛ¼Û x µÄÔö¼Ó¶ø¼õС,¿É½üËÆÓÃÏßÐÔ¹Øϵ±íʾ

y?a0?a1x (1)

ÆäÖУ¬a0 ºÍ a1 ÊÇ´ý¶¨³£Êý¡£

ÏúÊÛÔö³¤Òò×Ó k Ëæ¹ã¸æ·ÑÓà z ÏÈÔöºó¼õ£¬¿ÉÓöþ´Î·½³Ì±íʾ

k?b0?b1z?b2z2 (2)

ÆäÖУ¬b0£¬b1 ºÍ b2 Ò²ÊÇ´ý¶¨³£Êý¡£´ý¶¨³£Êý¿É¸ù¾Ý±íÖÐÊý¾ÝÄâºÏ¡£ ͶÈë¹ã¸æ·ÑÖ®ºó£¬Êµ¼ÊÏúÊÛÁ¿Îª

s?ky (3)

ÀûÈóÊÇÊÕÈë¼õÖ§³ö£¬ÊÕÈëÊÇÊÛ»õµ¥¼Û x ³ËÒÔÏúÊÛÁ¿ s £»Ö§³ö°üÀ¨³É±¾ºÍ¹ã¸æ·Ñ£¬³É±¾Êǽø»õµ¥¼Û2³ËÒÔÏúÊÛÁ¿ s ¡£Òò´ËÀûÈóΪ

p?sx?2s?z?ky(x?2)?z?(b0?b1z?b2z2)(a0?a1x)(x?2)?z (4)

ÕâÊǶþÔªº¯Êý£¬Çó×î´óÀûÈó¾ÍÊǶþÔªº¯ÊýµÄ×î´óÖµ¡£Áî

?P?P?0£¬?0 ?x?z¼´