专题九 带电粒子在匀强磁场中运动的临界极值及多解问题
突破
有界磁场中临界问题的处理方法
考向1 “放缩法”解决有界磁场中的临界问题 1.适用条件
(1)速度方向一定,大小不同
粒子源发射速度方向一定、大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化.
(2)轨迹圆圆心——共线
如图所示(图中只画出粒子带正电的情景),速度v0越大,运动半径也越大.可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直速度方向的直线PP′上.
2.方法界定
以入射点P为定点,圆心位于PP′直线上,将半径放缩作轨迹,从而探索出临界条件,这种方法称为“放缩法”.
[典例1] 如图所示,垂直于纸面向里的匀强磁场分布在正方形abcd区域内,O点是cd边的中点.一个带正电的粒子仅在洛伦兹力的作用下,从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t0刚好从c点射出磁场.
现设法使该带电粒子从O点沿纸面以与Od成30°的方向,以大小不同的速率射入正方形内,粒子重力不计.那么下列说法中正确的是( )
A.若该带电粒子从ab边射出,它经历的时间可能为t0 5t0B.若该带电粒子从bc边射出,它经历的时间可能为
35t0
C.若该带电粒子从cd边射出,它经历的时间为 32t0
D.若该带电粒子从ad边射出,它经历的时间可能为
3
[解析] 作出从ab边射出的轨迹①、从bc边射出的轨迹②、从cd边射出的轨迹
③和从ad边射出的轨迹④.由带正电的粒子从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t0刚好从c点射出磁场可知,带电粒子在磁场中做圆周运动的周期是2t0.由图可知,5t04t0
从ab边射出经历的时间一定不大于;从bc边射出经历的时间一定不大于;从cd边射
635t0t0
出经历的时间一定是;从ad边射出经历的时间一定不大于,C正确.
33
[答案] C
考向2 “旋转法”解决有界磁场中的临界问题 1.适用条件
(1)速度大小一定,方向不同
带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射入初速度为
mv0
v0,则圆周运动半径为R=.如图所示.
qB
(2)轨迹圆圆心——共圆
带电粒子在磁场中做匀速圆周运动的圆心在以入射点P为圆心、半径R=2.方法界定 将一半径为R=
mv0
的圆上. qBmv0
的圆绕着入射点旋转,从而探索出临界条件,这种方法称为“旋转法”. qB[典例2] (2017·湖南长沙质检)如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60 T.磁场内有一块平面感光板ab,板面与磁场方向平行.
在距ab为l=16 cm处,有一个点状的α粒子放射源S,它向各个方向发射α粒子,α
粒子的速度都是v=3.0×10 m/s.已知α粒子的比荷=5.0×10 C/kg,现只考虑在纸面内运动的α粒子,求ab板上被α粒子打中区域的长度.
[解题指导] 过S点作ab的垂线,根据左侧最值相切和右侧最值相交计算即可. [解析] α粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R表示轨迹半径,
6
qm7
v2
有qvB=m
R由此得R= 代入数值得R=10 cm,可见2R>l>R
因朝不同方向发射的α粒子的圆轨迹都过S,由此可知,某一圆轨迹在下图中N左侧与
mvqBab相切,则此切点P1就是α粒子能打中的左侧最远点.为确定P1点的位置,可作平行于ab的直线cd,cd到ab的距离为R,以S为圆心,R为半径,作圆弧交cd于Q点,过Q作ab的垂线,它与ab的交点即为P1.即:NP1=R-(l-R)=8 cm
2
2
再考虑N的右侧.任何α粒子在运动中离S的距离不可能超过2R,在N点右侧取一点P2,取SP=20 cm,此即右侧能打到的最远点
由图中几何关系得NP2=(2R)-l=12 cm 所求长度为P1P2=NP1+NP2 代入数值得P1P2=20 cm. [答案] 20 cm 突破
带电粒子在磁场中运动的多解问题
22考向1 带电粒子电性不确定形成多解
受洛伦兹力作用的带电粒子,可能带正电荷,也可能带负电荷,在相同的初速度的条件下,正、负粒子在磁场中运动轨迹不同,导致形成多解.
[典例3] 如图所示,宽度为d的有界匀强磁场,磁感应强度为B,MM′和NN′是磁场左右的两条边界线.现有一质量为m、电荷量为q的带电粒子沿图示方向垂直磁场射入.要使粒子不能从右边界NN′射出,求粒子入射速率的最大值为多少?
[解题指导] 由于粒子电性不确定,所以分成正、负粒子讨论,不从NN′射出的临界条件是轨迹与NN′相切.
[解析] 题目中只给出粒子“电荷量为q”,未说明是带哪种电荷,所以分情况讨论. 1
若q为正电荷,轨迹是如图所示的上方与NN′相切的圆弧,则轨道半径
4
mvR= Bq又d=R-R2
(2+2)Bqd解得v=.
m3
若q为负电荷,轨迹是如图所示的下方与NN′相切的圆弧,则轨道半径
4
mv′R′=
Bq又d=R′+
R′
2
(2-2)Bqd解得v′=
m
[答案]
(2+2)Bqd(2-2)Bqd(q为正电荷)或(q为负电荷)
mm考向2 磁场方向不确定形成多解
有些题目只告诉了磁感应强度的大小,而未具体指出磁感应强度的方向,此时必须要考虑磁感应强度方向不确定而形成的多解.
[典例4] (多选)一质量为m、电荷量为q的负电荷在磁感应强度为B的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在