r设平面PBD的法向量为n?(x,y,z),
ruuur???n?BP?0,??3y?3z?0,则?ruuu,即?, ························· 9分 r???n?BD?0?2x?23y?0r令z?1,则平面PBD的一个法向量为n?(3,3,1), ·················· 10分 ur依题意,平面PBC的一个法向量m?(1,0,0), ····················· 11分
urrurrm?n313所以cos?m,n??u, rr?13mn故二面角C?PB?D的余弦值为313. ························ 12分 1319.本题考查离散型随机变量分布列及其期望、频率分布直方图、样本估计总体、回归分析、函数与导数
等知识;考查学生的阅读理解能力、数据处理能力和运算求解能力;考查统计与概率思想、函数与方程思想、化归与转化思想、创新意识和应用意识.满分12分.
解:(1)设每件产品的销售利润为?元,则?的所有可能取值为1.5、3.5、5.5,
由直方图可得,一、二、三等品的频率分别为0.4、0.45、0.15,
所以,P??=1.5?=0.15,P??=3.5?=0.45,P??=5.5?=0.4, ············ 2分
所以随机变量?的分布列为:
? P 1.5 0.15 3.5 0.45 5.5 0.4 所以,E??1.5?0.15?3.5?0.45?5.5?0.4?4.
故每件产品的平均销售利润为4元.························· 4分 (2)(i)由y=a?x得,lny?lna?xb?lna?blnx, 令u?lnx,v?lny,c?lna,则v?c?bu,
b???=由表中数据可得,b??u?u??v?v?iii?15??i?15ui?u?2?0.41?0.25, ················ 6分 1.64??24.87?0.25?16.30?4.159, 则c······················ 7分 ?=v?bu55 - 9 -
?4.1591???4.159?0.25lnx?ln?e?x4?, ??4.159?0.25u,即lny所以,v??因为e4.159??64x, ?64,所以y1414故所求的回归方程为y?64x. ·························· 8分 (ii)设年收益为z万元,则z??E???y?x?256x?x, ················ 9分 设t?x,f?t??256t?t,则f'?t??256?4t3?464?t3,
41414??当t??0,4?时,f'?t??0,f?t?在?0,4?单调递增;
当t??4,???时,f'?t??0,f?t?在?4,???单调递减. ··············· 11分 所以,当t?4,即x?256时,z有最大值为768,
即该厂应投入256万元营销费,能使得该产品一年的收益达到最大768万元. ······· 12分
20.本题考查直线的方程、直线与椭圆的位置关系等知识;考查运算求解能力、推理论证能力等;考查数
形结合思想、函数与方程思想、化归与转化思想等.满分12分.
解法一:(1)设A?x0,y0??y0?0?,因为OA?5,所以x0?y0?5,①
22x02y02??1,② ······················· 2分 又因为点A在椭圆上,所以49?45,?x0??5由①②解得,?,或
?y?350?5??45,?x0???4535??5,所以的坐标为或,A?????5??5?y?350?5??4535?, ···································· 3分 ???5,5????又因为F的坐标为0,5,所以直线AF的方程为y????11x?5或y?x?5. ······ 5分 22(2)当A在第一象限时,直线AF:y??1x?5, 2?x12y12??1,??49设M?x1,y1?,N?x2,y2?,则?, 22?x2?y2?1?9?4
- 10 -
两式相减得
?x1?x2??x1?x2???y1?y2??y1?y2??0,
49因为
MN不过原点,所以
?y1?y2???y1?y2???9?x1?x2??x1?x2?4,即kMNkOP??9,同理:49kABkOQ??,
4又因为O,P,Q在同一直线上,所以kOP?kOQ,所以kMN?kAB??1, ··········· 8分 2设直线MN:y??1x?m, 2?x2y2??1,??4922由?得,5x?2mx?2m?18?0,由??0,得?10?m?10, ?y??1x?m??22m2m2?18,x1x2?, ····················· 9分 由韦达定理得,x1?x2?55?1?2所以MN?1?kx1?x2?1?????2?又因为O到直线MN的距离d?2?x1?x2?2?4x1x2?35?10?m2, 5m1?14?2m, 5所以S?OMN133m2?10?m22?MN?d?m10?m???3
552222当且仅当m?10?m,即m??5时等号成立,
所以?OMN面积的最大值为3. ····························· 11分 当A在第二象限时,由对称性知,?OMN面积的最大值也为3.
综上,?OMN面积的最大值为3. ···························· 12分 解法二:(1)同解法一;·································· 5分 (2)当点A在第一象限时,直线AF:y??1x?5 2 - 11 -
?x2y2??1,??595??429,由?得,5x?25x?8?0,则AB中点Q的坐标为??, ······ 6分
?510??y??1x?5??2所以直线OQ:y?9x, 2①当直线MN斜率不存在或斜率为零时,O,P,Q不共线,不符合题意;
②当直线MN斜率存在时,设MN:y?kx?m?k?0?,M?x1,y1?,N?x2,y2?,
?x2y2???1,22222由?4得,(9?4k)x?8kmx?4m?36?0,由??0,得m?4k?9, 9?y?kx?m?8km4m2?36,x1x2?由韦达定理得,x1?x2??,
9?4k29?4k2所以y1?y2?k?x1?x2??2m?18m, ······················· 7分
9?4k2y1?y2991???,解得k??, ··········· 9分
x1?x24k22因为O,P,Q在同一直线上,所以
2m2m2?18,x1x2?,?10?m?10, 所以x1?x2?55?1?2所以MN?1?kx1?x2?1?????2?又因为O到直线MN的距离d?2?x1?x2?2?4x1x2?35?10?m2, 5m1?14?2m, 5所以S?OMN?21333MN?d?m10?m2?m2?10?m2????m2?5??25 2555当m2?5,即m??5时,?OMN面积的最大值为3,
所以?OMN面积的最大值为3. ····························· 11分 当A在第二象限时,由对称性知,?OMN面积的最大值也为3.
综上,?OMN面积的最大值为3. ···························· 12分
- 12 -