学生:工作时间越长生产的啤酒越多,工作时间越短生产的啤酒越少。
2.小组合作,探索新知
谈话:原来工作总量和工作时间有这样的关系。现在和小组内的同学从两种量中找出几组对应的数,算出工作总量和工作时间的比值,看看有什么新的发现?
学生在小组内列举数据,求出比值,交流自己的发现,在此基础上全班汇报。教师根据学生的汇报适时进行板书:
学生发现工作总量和工作时间的比值都是14,也就是一定的。 这个比值实际上就是什么?你能用一个式子表示它们的关系吗?
[设计意图]为学生创设讨论交流的空间,改变了过去课堂教学强调接受学习、死记硬背的学习方式,培养了学生交流与合作的能力和获取知识的能力。
3.理解概念,巩固应用
谈话:回忆我们的学习过程可以发现,工作时间变化,工作总量也随着变化,而工作效率不变,也就是工作总量与工作时间的比值一定,我们就说工作总量和工作时间是成正比例的量,它们的关系叫做正比例关系。
学生自我阅读40页第一个红点内容,把重点的地方画下来。 [设计意图]重视指导学生阅读课本,学生在自主理解中巩固所学的知识,发展学习能力。
谈话:生活中还有许多这样成正比例关系的量,我们来看看神州五号飞船太空飞行情况的记录情况。
时间(秒) 1 2 3 4 …
路程(千米) 7.9 15.8 23.7 31.6 …
在理解表格信息的基础上,先自己想一想下面的问题,再和同位交流。
1.表中()和()是有联系的量。
2.任意写出三个相对应的路程和时间的比,并算出它们的比值。 3.比值实际上表示(),请用式子表示它们的关系。
因为路程x时间=速度(一定),所以路程和时间成比例。 想一想生活中还有哪两种量成正比例关系?和同位交流一下,说明原因。
[设计意图]引导学生以自主探索与合作交流的方式理解数学,解决问题。在引导学生初步认识了两个相关联的量后,敢于放手让学生采取小组合作的方式学习,进行合作探究,从而归纳出正比例的意义。
(三)巩固练习 加深理解 1.补充练习
判断下面的两种量是否成正比例,并说明理由。 (1)每件衣服的价钱一定,购买的件数和总价。 (2)长方体的高一定,体积和底面积。 (3)和一定,一个加数和另一个加数。
在练习中学生体会,两个有关系的量比值一定,这两个量就成正比例关系,与加减有关系不成比例。
2.自主练习第2题
学生先想一想,什么情况下两个数量成正比例?再独立解答。第(1)小题播音时间与播音字数的比值一定,所以播音时间与播音字数成正比例;第(2)小题虽然已播字数与未播字数也是有联系的量,但是已播字数与未播字数的比值不一定,所以不成正比例。
3.自主练习第5题
在学生独立思考的基础上组织交流,使学生明确根据X和Y成正比例,得出X和Y的比值一定是,然后利用这个比值和已知数据就能算出每一组对应的另一个数据。
[设计意图] 通过多种形式的练习,由浅入深要求逐步提高,学生的思维也得到了提高;最后的第五题拓展学生思维,引导学生自己对知识进行梳理,培养学生的应用能力,可谓别具匠心。
(四)课堂小结
这节课我们研究了什么问题?你有什么收获?
本学期总第26课时 本单元第5课时 授课时间:4.10 课题:正比例的意义 主备人:赵红叶
一、教学目标
(一)学生感受正比例在实际生活中的存在,经历概括两种量成正比例关系的过程。
(二)理解正比例的意义,并能根据正比例的意义正确判断两种量是否成正比例关系。
(三)初步认识正比例的图像是一条直线,能根据给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量看图估计另一个量的数值。
(四)培养学生初步的函数意识,进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动参与学习的习惯。
二、教学重点
用图来表示两个数量成正比例关系。 三、教学难点
掌握成正比例的量的变化规律及特征 四、教学准备 课件 五、教学过程 (一)创设情境
谈话:同学们,通过上节课的学习,我们知道了在啤酒生产中,工作总量和工作时间是成正比例关系的两个量。其实在实际生活中还可以用图来表示两个数量成正比例关系。
[设计意图]紧密联系第一个红点中的情境,激发学生的学习兴趣,使学生能很快的进入了学习状态。
(二)探究新知 1.画出正比例图像 课件出示第二个红点的表格
谈话:工作总量和工作时间两种量还可以用横轴和纵轴表示。用课件分别出示横轴和纵轴。学生看明白:横轴表示工作时间,纵轴表示工作总量。
想一想:折线统计图的描点方法,你能找到1小时生产14吨的这个点吗?教师引导学生操作交流,横轴上找到1表示1小时,纵轴
上找到14表示14吨,这样就找到相对应的点,这个点表示1小时生产14吨。
谈话:像刚才那样描出表示其它各组数据的点,然后按顺序把这些点连起来。
学生动手操作,在方格图中找出相应的点依次描出,尝试画出正比例的图像,体会每个点都应该表示路程和时间的一组对应数值。
2.认识正比例图像
谈话:观察画出的图像,和组内同学交流,你发现了什么? 学生发现正比例图像是一条直线。这样的直线能反映出成正比例的两个量之间的变化规律,工作时间变化工作总量变化也随着变化。
3.应用正比例图像
(1)谈话:根据上图估计一下,4.5小时大约能生产多少吨啤酒?想一想应该先找什么,再找什么?
学生在小组内交流总结方法,全班汇报。先在横轴上确定4.5是在4和5中间,所以对应的纵轴就在56和70中间,大约是63吨。教师要指导学生利用画垂线或画平行线的技能,尽量使得数准确些。
(2)估计一下,要生产80吨啤酒,大约需要多少小时?回忆刚才我们解决问题的方法,这个问题该怎样解决?
学生独立思考,汇报交流解决问题的方法。交流总结先在纵轴上接近84的地方找到80,横着在图像上找到点,由它在横轴上确定对应的点接近于6,估计出大约在5个半小时左右。
4.教师总结:看来同学们都能应用正比例图像根据一个量估计出所对应的另一个量,从这个图像我们也可以直观的看出这两种量同时扩大或缩小的变化规律。
[设计意图]在教师的引导下,学生动手操作感知正比例图像,通过应用图像帮助学生进一步认识,图像上任意一点所表示的实际意义,做到:学生自己能学的自己学,自己能做的自己做,培养合作互动的精神,提高学生实际的数学应用能力,为今后学习函数图像打下基础,做好中小衔接。
(三)巩固练习 1.完成自主练习第3题