视频信号放大器的设计 下载本文

Ib、Ic条件下的Vce饱和度(最大):700mV 50mA,500mA 电流 - 集电极截止(最大):100nA

在某 Ic、Vce 时的最小直流电流增益 (hFE):100 100mA,1V 功率 - 最大:625mW 频率 - 转换:100MHz 安装类型:通孔

封装/外壳:TO-226-3、TO-92-3 标准主体

第二节 电容的选择

电解电容器,又称电容器隔膜纸,它在电解电容器的阳极和阴极铝箔之间起隔离、绝缘作用。电解电容器纸的质量越好,越能满足电容器耐压、低阻抗、损耗小的要求。电解电容器是指在铝、钽、铌、钛等金属的表面采用阳极氧化法生成一薄层氧化物作为电介质,以电解质作为阴极而构成的电容器。

电解电容器的内部有储存电荷的电解质材料,分正、负极性,类似于电池,不可接反。正极为粘有氧化膜的金属基板,负极通过金属极板与电解质(固体和非固体)相连接。

无极性(双极性)电解电容器采用双氧化膜结构,类似于两只有极性电解电容器将两个负极相连接后构成,其两个电极分别为两个金属极板(均粘有氧化膜)相连,两组氧化膜中间为电解质。有极性电解电容器通常在电源电路或中频、低频电路中起电源滤波,退耦、信号耦合及时间常数设定、隔直流等作用。无极性电解电容器通常用于音响分频器电路、电视机S校正电路及单相发动机的起动电路。

电解电容器的工作电压为4V、6.3V、10V、16V、25V、35V、50V、63V、80V、100V、160V、200V、300V、400V、450V、500V,工作温度为-55°~+155℃(4~500V)、,特点是容量大、体积大、有极性,一般用于直流电路中作滤波、整流。目前最常用的电解电容器有铝电解电容器和钽电解电容器。

在设计中选择了5个极性电容:

两个100uF|16V, 三个470 uF|16V; 选择了6个无极性电容:100nF。

6

第三节 电阻的选择

电阻(Resistance,通常用“R”表示),在物理学中表示导体对电流阻碍作用的大小。导体的电阻越大,表示导体对电流的阻碍作用越大。不同的导体,电阻一般不同,电阻是导体本身的一种特性。电阻将会导致电子流通量的变化,电阻越小,电子流通量越大,反之亦然。

阻元件的电阻值大小一般与温度有关,还与导体长度、横截面积、材料有关。衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。多数(金属)的电阻随温度的升高而升高,一些半导体却相反。如:玻璃,碳在温度一定的情况下,有公式R=ρl/s其中的ρ就是电阻率,l为材料的长度,单位为m,s为面积,单位为平方米。可以看出,材料的电阻大小正比于材料的长度,而反比于其面积。

电阻物理量:1欧电压产生一鸥电流则为1鸥电阻。另外电阻的作用除了在电路中用来控制电流电压外还可以制成发热元件等。

电阻的主要物理特征是变电能为热能,也可说它是一个耗能元件,电流经过它就产生内能。电阻在电路中通常起分压、分流的作用。对信号来说,交流与直流信号都可以通过电阻。

色环电阻的识别方法:

带有四个色环的其中第一、二环分别代表阻值的前两位数;第三环代表倍率;第四环代表误差。快速识别的关键在于根据第三环的颜色把阻值确定在某一数量级范围内,例如是几点几K、还是几十几K的,再将前两环读出的数”代”进去,这样就可很快读出数来。[2]

(1)熟记第一、二环每种颜色所代表的数。可这样记忆:棕1,红2,橙3,黄4,绿5,蓝6,紫7,灰8,白9,黑0。这样连起来读,多复诵几遍便可记住。 记准记牢第三环颜色所代表的 阻值范围,这一点是快识的关键。具体是: 金色:几点几 Ω 黑色:几十几 Ω 棕色:几百几十 Ω 红色:几点几 kΩ 橙色:几十几 kΩ 黄色:几百几十 kΩ 绿色:几点几 MΩ

7

蓝色:几十几 MΩ

从数量级来看,整体上可把它们划分为三个大的等级,即:金、黑、棕色是欧姆级的;红橙、黄色是千欧级的;绿、蓝色则是兆欧级的。这样划分一下是为了便于记忆。

(3)当第二环是黑色时,第三环颜色所代表的则是整数,即几,几十,几百 kΩ等,这是读数时的特殊情况,要注意。例如第三环是红色,则其阻值即是整几kΩ的。 (4)记住第四环颜色所代表的误差,即:金色为5%;银色为10%;无色为20%。 下面举例说明:

例1当四个色环依次是黄、橙、红、金色时,因第三环为红色、阻值范围是几点几kΩ的,按照黄、橙两色分别代表的数”4″和”3″代入,,则其读数为4.3 kΩ。第环是金色表示误差为5%。

例2当四个色环依次是棕、黑、橙、金色时,因第三环为橙色,第二环又是黑色,阻值应是整几十kΩ的,按棕色代表的数”1″代入,读数为10 kΩ。第四环是金色,其误差为5%。

在设计中选择了:150Ω、10kΩ、1.5kΩ、1kΩ、330Ω、3.3kΩ、390kΩ、2.2kΩ、560Ω、27Ω;

8

第二章 视频信号放大器设计

第一节 视频信号放大性能参数

一、放大电路的主要频响参数

(1)中频增益AM及相角φM

指放大器工作在中频区的增益与相位,它们与频率无关。 (2)上限频率fH及下限频率fL

它定义为当信号频率变化时,放大器增益的幅值下降到0.707AM时所对应的频率。当频率升高时,增益下降到0.707AM时所对应的频率称为上限频率fH,即

AM A(fH) = 2 (2—1) 当频率下降时,增益下降到0.707AM时所对应的频率称为下限频率fL,即

(3)通频带BW

它定义为上、下限频率之差值,即

BW= fH-fL (2—3) 当fH>>fL时,BW≈fH。 (4)增益带宽积GBW

它是放大器中频增益AM与通频带BW的乘积,即

GBW=│AM·BW│ (2—4)

AM A(fL) = 2 (2—2)

二、放大电路在不同频段内的等效电路

若考虑电抗元件的影响,放大器的增益应为频率的复函数:A(jω)=A(ω)ejφA(ω)。放大器的频率特性可分为三个频段:中频段、低频段、高频段。对不同频段内的放大器进行分析,应建立不同的等效电路。

(1)中频段:通频带BW以内的区域

由于耦合电容及旁路电容的容量较大,在中频区呈现的容抗(1/ωC)较小,故可视为短路;而三极管的极间电容的容量较小,在中频区呈现的容抗较大,故可视为开路。因此,在

9