title('Âö³åͼ'); subplot(223); stairs(t,'b'); title('½×ÌÝͼ'); subplot(224); bar(t,'g');
title('ÌõÐÎͼ');
µÚ¶þÌ⣺
x=1:1:50; y1=2.^x; y2=(1/2).^x; figure(1)
plot(x,y1,'r',x,y2,'g'); gtext('y1=2.^x'); gtext('y2=(1/2).^x');
µÚ3Ì⣺
function [y,t]=mcircle(r)
% ¸ù¾Ý¸ø¶¨µÄ°ë¾¶r£¬ÒÔÔµãΪԲÐĻһ¸öºìÉ«¿ÕÐÄÔ²¡£ t=0:2*pi/64:2*pi; y=r*ones(size(t));
subplot(121), polar(t,y,'*r') [X,Y]=pol2cart(t,y); % »òÕß²ÉÓÃÈçÏ·½·¨×ª»» % X=r*cos(t); % Y=r*sin(t);
subplot(122), plot(X,Y,'*r') axis equal; axis square; µÚ4Ì⣺
t=0:pi/180:2*pi*5; r1=10/2;
x1=r1*cos(t); y1=r1*sin(t); z=t/(2*pi);
subplot(121), plot3(x1,y1,z) grid on
%--------------------------- r2=linspace(5,0,length(t)); x2=r2.*cos(t); y2=r2.*sin(t);
subplot(122), plot3(x2,y2,z) grid on
ʵÑéÆß£ºMatlab¶àÏîʽºÍ·ûºÅÔËËã
Ò»¡¢ÊµÑéÄ¿µÄ
1£®ÕÆÎÕMatlab¶àÏîʽµÄÔËËã¡£ 2£®Á˽â·ûºÅÔËËã¡£
¶þ¡¢ÊµÑéÄÚÈÝ£¨±ß×öʵÑ飬±ß½«Éú³É½á¹ûºÍͼÐο½±´µ½WordÎĵµÖУ©
1£®½«¶àÏîʽP(x)?(x?2)(x?3)(x?7)(x?1)»¯ÎªxµÄ½µÃÝÅÅÁС£ 2£®ÇóÒ»Ôª¸ß´Î·½³ÌµÄ¸ù¡£
3£®ÇóÒ»Ôª¸ß´Î·½³ÌµÄ¸ù£¬²¢»³ö×ó±ß¶àÏîʽº¯ÊýÔÚx?[?2,2]Çø¼äÄÚµÄÇúÏß¡£ 4£®Çó¶àÏîʽf1(x)?x3?3x2?5x?7ºÍf2(x)?8x3?6x2?4x?2µÄ³Ë»ýf(x)£»²¢Çó
f(x)?f1(x)µÄÉ̺ÍÓàʽ¡£
f2(x)5£®Çóy?x5?tan(4x2)?3µÄ·ûºÅµ¼Êý¡£
6£®Ó÷ûºÅÔËËãÇóʵÑéÄÚÈÝ4ÖеÄf(x)µÄ±í´ïʽ¡£
Èý¡¢Éè¼ÆÌáʾ
1£®¹ØÓÚ¶àÏîʽÔËËãµÄº¯ÊýÓÐpoly¡¢rootsµÈ¡£ 2£®¶àÏîʽ×ö¼Ó¼õÔËËãʱҪעÒâµÈ³¤¶È¡£
3£®·ûºÅ±í´ïʽµÄÊäÈë¿ÉÒÔÓÃ×Ö·û´®·½Ê½£¬Ò²¿ÉÒÔÓÃsymº¯Êý¡£
ËÄ¡¢ÊµÑ鱨¸æÒªÇó
1£®±àдʵÏÖµÚ¶þ½ÚʵÑéÄÚÈÝÖÐËùʹÓõĺ¯ÊýÎļþ£¬²¢¼Ç¼ÏàÓ¦µÄÉú³É½á¹ûºÍͼÐΡ£ 2£®¶ÔÓÚ¶àÏîʽµÄ½á¹ûÓ¦ÒÔ¶àÏîʽÏòÁ¿ºÍ¶àÏîʽ±í´ïʽÁ½ÖÖ·½Ê½¼Ç¼¡£
3£®ÊéдʵÑ鱨¸æÊ±Òª½á¹¹ºÏÀí£¬²ã´Î·ÖÃ÷£¬ÔÚ·ÖÎöÃèÊöµÄʱºò£¬ÐèҪעÒâÓïÑÔµÄÁ÷³©¡£
Îå¡¢²Î¿¼´ð°¸
µÚ1Ì⣺
P=poly([2,-3,7,-1]) ½á¹û£º P =
1 -5 -19 29 42 ¼´£ºP(x)?x4?5x3?19x2?29x?42 µÚ2Ì⣺
P1=[1 -5 -30 150 273 -1365 -820 4100 576 -2880]; x1=roots(P1)
½á¹û£º x1 =
5.0000 -4.0000 4.0000 -3.0000 3.0000 -2.0000 -1.0000 2.0000 1.0000 µÚ3Ì⣺
P2=[1 0 -2 0 1]; x2=roots(P2) n=1;
for x=-2:0.01:2
y(n)=sum(P2.*(x.^[(length(P2)-1):-1:0])); % »òÕß y(n)=x^4-2*x^2+1; n=n+1; end
x=-2:0.01:2; plot(x,y)
½á¹û£º(ÓÐÖØ¸ù£¡) x2 =
1.0000 + 0.0000i 1.0000 - 0.0000i -1.0000 + 0.0000i -1.0000 - 0.0000i µÚ4Ì⣺
f1=[1 3 5 7];f2=[8 -6 4 -2]; f=conv(f1,f2)
f11=[zeros(1,length(f)-length(f1)),f1] % ²¹0£¬Óëfͬά [q,r]=deconv(f-f11,f2) ½á¹û£º f =
8 18 26 36 -28 18 -14 ¼´£ºf(x)?8x6?18x5?26x4?36x3?28x2?18x?14 f11 =
0 0 0 1 3 5 7 q =
1.0000 3.0000 5.0000 6.8750 r =
0 0 0 0 -3.7500 -4.5000 -7.2500 µÚ5Ì⣺
y='x^5+tan(4*x^2)+3'; diff(y) ½á¹û£º ans =
5*x^4+8*(1+tan(4*x^2)^2)*x µÚ6Ì⣺
f1=sym('x^3+3*x^2+5*x+7'); f2=sym('8*x^3-6*x^2+4*x-2'); f=f1*f2 collect(f) (f-f1)/f2 collect(ans) ½á¹û£º f =
(x^3+3*x^2+5*x+7)*(8*x^3-6*x^2+4*x-2) f =
8*x^6+18*x^5+26*x^4+36*x^3-28*x^2+18*x-14 h =
(-21+8*x^6+18*x^5+26*x^4+35*x^3-31*x^2+13*x)/(8*x^3-6*x^2+4*x-2) h =
(-21+8*x^6+18*x^5+26*x^4+35*x^3-31*x^2+13*x)/(8*x^3-6*x^2+4*x-2)