第10页 平面的投影(二) 直线与平面及两平面的相对位置(一)
1、求?ABC对V面的倾角β。
●解题要点:利用一次换面可将一般位置平面变换为投影面垂直面。
2、求
ABCD的真形。
●利用两次换面可将一般位置平面变换为投影面平行面。
20
3、正平线AB是正方形ABCD的边,点C在点B的前上方,正方形对V面的倾角β=45°,补全正方形的两面投影。 ●利用正平线AB反映一次换面将可将一般位
4、作直线CD与?LMN的●从铅垂面LMN在水平
21
实长,再根据直角投影定理以及经置平面投影面垂直面。
交点,并表明可见性。 投影面积聚为一直线入手,
先利用公有性得到交点的一个投影,再根据从属关系求出交点的另一个投影。可见性判断可用重影点法进行判断;简单时可用直观法。
5、作出侧垂线AB与
CDEF的交点,并表明可见性。
●从直线AB为侧垂线在侧面投影面积聚为一个点入手,先利用公有性得到交点的一个投影,再根据从属关系求出交点的另一个投影。可见性判断可用重影点法进行判断; 简单时可用直观法。
22
6、作?EFG与
PQRS的交线,并表明可见性。
●铅垂面PQRS与一般平面相交,从铅垂面的水平投影积聚为一条直线入手,先利用公有性得到交线的一个投影,个投影。本题可见性判
7、作正垂面M与
ABCD的交线,并表明可见性。
再根据从属关系求出交线的另一断可用直观法。
●正垂面MV与一般平面相交,从正垂面的正面投影积聚为一条直线入手,先利用公有性得到交线的一个投影,再根投影。本题可见性判断可
23
据从属关系求出交线的另一个用直观法。