《金属学和热处理》崔忠圻[第二版]课后答案解析[完整版] 下载本文

裂纹不易扩展。 2、

力学性能较差。

该晶区晶粒较大,树枝晶发达,因此显微缩孔较多,

2-7 为了得到发达的柱状晶区应该采取什么措施为了得到发达的等轴晶区应该

采取什么措施其基本原理如何 答:

得到柱状晶区的措施及其原理: 1、 提高液态金属过热度。增大固液界面前沿液态金属的温度梯度,有利于增大柱状晶区。 2、 选择散热能力好的铸型材料或增加铸型的厚度,增强铸型的冷却能力。增大已结晶固体的温度梯度,使固液界面前沿液态金属始终保持着定向散热,有利于增加柱状晶区。 3、 提高浇注速度,增大固液界面前沿液态金属的温度梯度。 4、 提高熔化温度。减少非金属夹杂物数量,非均匀形核数目少,减少了在固液界面前沿形核的可能性。 得到等轴晶区的措施及其原理: 1、 降低液态金属过热度。减小固液界面前沿液态金属的温度梯度,有利于缩小柱状晶区,增大中心等轴晶区。 2、 选择散热能力一般的铸型,降低铸型的冷却速度。减弱已结晶固体的温度梯度,减弱液态金属定向散热的趋势,可以缩小柱状晶区,增大中心等轴晶区。 3、 降低熔化温度。增加液态金属中废金属夹杂物的数目,非均匀形核数目多,增加了在固液界面前沿形核的可能性 4、 降低浇注速度,可以降低固液界面前沿液态金属的温度梯度。

2-8 指出下列错误之处,并改正之。 1)所谓临界晶核,就是体积自由能的减少完全补偿表面自由能增加时的晶胚大小。

2)在液态金属中,凡是涌现出小于临界晶核半径的晶胚都不能形核,但是只要有足够的能量起伏提供形核功,还是可以形核。

3)无论温度分布如何,常用纯金属都是树枝状方式生长。 答: 1) 所谓临界晶核,就是体积自由能的减少补偿2/3表面自由能增加时的晶胚大小。 2) 在液态金属中,凡是涌现出小于临界晶核半径的晶胚都不能形核。 3) 在负的温度梯度时,具有粗糙固液界面的纯金属晶体以树枝状方式生长;具有光滑界面的晶体在杰克逊因子很大时,仍有可能生长为具有规则几何形状的晶体。

第三章 二元合金的相结构与结晶

3-1 在正温度梯度下,为什么纯金属凝固时不能呈树枝状生长,而固溶体合金却

能呈树枝状成长 答: 原因:

在纯金属的凝固过程中,在正温度梯度下,固液界面呈平面状生长;当温度梯度为负时,则固液界面呈树枝状生长。 固溶体合金在正温度梯度下凝固时,固液界面能呈树枝状生长的原因是固溶体合金在凝固时,由于异分结晶现象,溶质组元必然会重新分布,导致在固液界面前沿形成溶质的浓度梯度,造成固液界面前沿一定范围内的液相其实际温度低于平衡结晶温度,出现了一个由于成分差别引起的过冷区域。所以,对于固溶体合金,结晶除了受固液界面温度梯度影响,更主要受成分过冷的影响,从而使固溶体合金在正温度梯度下也能按树枝状生长。

3-2 何谓合金平衡相图,相图能给出任一条件下合金的显微组织吗 答:

合金平衡相图是指在平衡条件下合金系中合金的状态与温度、成分间关系的图解,又称为状态图或平衡图。由上述定义可以看出相图并不能给出任一条件下合金的显微组织,相图只能反映平衡条件下相的平衡。

3-3 有两个形状、尺寸均相同的Cu-Ni合金铸件,其中一个铸件的WNi=90%,另

一个铸件的WNi=50%,铸后自然冷却。问凝固后哪一个铸件的偏析严重为什么找出消除偏析的措施。 答:

WNi=50%铸件凝固后偏析严重。解答此题需找到Cu-Ni合金的二元相图。

原因:固溶体合金结晶属于异分结晶,即所结晶出的固相化学成分与母相并不相同。由Cu-Ni合金相图可以看出WNi=50%铸件的固相线和液相线之间的距离大于WNi=90%铸件,也就是说WNi=50%铸件溶质Ni的k0(溶质平衡分配系数)高,而且在相图中可以发现Cu-Ni合金铸件Ni的k0是大于1,所以k0越大,则代表先结晶出的固相成分与液相成分的差值越大,也就是偏析越严重。

消除措施:

可以采用均匀化退火的方法,将铸件加热至低于固相线100-200℃的温度,进行长时间保温,使偏析元素充分扩散,可达到成分均匀化的目的。

3-4 何谓成分过冷成分过冷对固溶体结晶时晶体长大方式和铸锭组织有何影响 答:

成分过冷:

固溶体合金在结晶时,由于选分结晶现象,溶质组元必然会重新分布,导致在固液界面前沿形成溶质的浓度梯度,造成固液界面前沿一定范围内的液相其实际温度低于平衡结晶温度,出现了一个由于成分差别引起的过冷区域。过冷度为平衡结晶温度与实际温度之差,这个过冷度是由成分变化引起的,所以称之为成分过冷。

成分过冷对固溶体结晶时晶体长大方式和铸锭组织的影响: 在固液界面前沿无成分过冷区域时,晶体以平面长大方式生长,长大速度完全受散热条件控制,最后形成平面状的晶粒组织;

在过冷区域比较小时,固液界面上的偶然突出部分,可伸入过冷区长大,突出部分约为,晶体生长是稳定的凹凸不平界面以恒速向液体中推进。这种凹凸不平的界面通常称之为胞状界面,具有胞状界面的晶粒组织称为胞状组织,因为它的显微形态很像蜂窝,所以又称为蜂窝组织,它的横截面典型形态呈规则的六变形; 在过冷区域较大时,则固溶体合金的结晶条件与纯金属在负温度梯度下的结晶条件相似,在固液界面上的突出部分可以向液相中突出相当大的距离,在纵向生长的同时,又从其侧面产生突出分枝,最终发展成树枝晶组织。

3-5 共晶点和共晶线有什么关系共晶组织一般是什么形态如何形成的 答:

共晶点和共晶线的关系: 共晶转变:在一定温度下,由一定成分的液相同时结晶出成分一定的两个固相的转变过程,称为共晶转变或共晶反应。在二元合金中,由相率可知,二元三相平衡时,其自由度为零,即在共晶转变时必然存在一个三相共晶平衡转变水平线,把这条水平相平衡线称作共晶线。把共晶线上对应发生共晶反应的液相合金成分点称为共晶点。

共晶组织的一般形态:

共晶组织的形态很多,按其中两相的分布形态,可以分为层片状、针片状、棒条状、树枝状、球状、螺旋状等。通常,金属-金属型的两相共晶组织大多为层片状或棒条状,金属-非金属性的两相共晶组织表现为针片状树枝状、。 共晶组织的形成过程:

和纯金属及固溶体合金的结晶过程一样,共晶转变同样要经过形核和长大的过程。在形核时,生成相中的两相必然一个在先,一个在后,首先形核的相称为领先相。如果领先相是溶质含量比较少的相,则多余的溶质必然要从先结晶的晶体中排出,造成固液界面前沿液相中溶质富集,为另一相的形核创造条件。而另一相在形核长大时必然要排出多余的溶剂原子向固液界面富集,在固液界面前沿形成溶质的贫瘠区,给领先相的形核又创造条件,于是两生成相就这样彼此交替的

的形核长大,最终形成共晶组织。反之亦然。

3-6 铋(熔点为℃)和锑(熔点为℃)在液态和固态时均能彼此无限互溶,W Bi=50%

的合金在520℃时开始凝固出成分为W Sb=87%的固相。W Bi=80%的合金在520℃时开始凝固出成分为W Sb=64%的固相。根据上述条件,要求: 1)绘出Bi-Sb相图,并标出各线和各相区的美称。

2)从相图上确定W Sb=40%合金的开始结晶温度和结晶终了温度,并求出它在400℃时的平衡相成分及其含量。 答:

1)相图和相区

2)T开与T终在相图中已标出,W Sb=40%合金在400℃时的平衡相成分及其含量可根据相图和杠杆定律计算得出:

根据相图可以看出:在400℃相平衡时,L1相为W Bi=80%的液相Bi-Sb合金,α相为W Bi=50%的固相相Bi-Sb合金。

根据杠杆定律:L1相的含量={()/()}×100%≈% α相的含量=%≈%

3-7 根据下列试验数据绘出概略的二元共晶相图:组员A的熔点为1000℃,组员B的熔点为700℃,W B=25%的合金在500℃结晶完毕,并由220/3%的先共晶α相与80/3%的(α+β)共晶体所组成;W B=50%的合金在500℃结晶完毕,并由40%的先共晶α相与60%的(α+β)共晶体所组成,而此合金中α相的总量为50%。 答: