【解析】
函数f?x??2sin??x???的图像过点0,3 ?2sin??3,即:sin????3 2Q0????2 ????3
又函数图象关于点??2,0?对称 ?2sin??2????????0,即:?2???k?,k?Z 3?3?1?????k??,k?Z
26Q0???1 ???????? ?f?x??2sin?x??,
3?6?6??????f??1??2sin?????2sin?1
6?63?本题正确结果:1
10.若实数x,y满足2cos2?x?y?1?x?1???y?1???x?y?122?2xy.则xy的最小值为____________
【答案】. 【解析】
∵2cos2?x?y?1??14?x?1???y?1??2xyx?y?122>0, ,∴x?y?1?x?1???y?1?Qx?y?1??x?y?1??22?2xy?x?y?1??2?1x?y?1??x?y?1??1
x?y?11?2x?y?1?x?y?1??1?2,
x?y?1当且仅当x?y?1?1时即x=y时取等号
Q2cos2?x?y?1??2,当且仅当x?y?1?k??k?Z?时取等号
∴
?x?1???y?1??2xyx?y?122?2cos2?x?y?1??2,即x?y?1?1且
x?y?1?k??k?Z?,
即x?y?1?k??k?Z?, 22?1?k??1(当且仅当
因此xy??, k?0时取等号)???2?4从而xy的最小值为. 11.设函数f(x)?sin(2x?【答案】(【解析】
不妨设x1?0?x2,则x2?x1?x2?x1,由图可知x2?x1?0?(?14?3),若x1x2?0,且f(x1)?f(x2)?0,则x2?x1的取值范围是_______.
?,??) 3?3)??3.
故答案为:(
?,??) 312.已知角?为第一象限角,【答案】(1,2] 【解析】
a?sin??3,则实数a的取值范围为__________.
cos?由题得a?sin??3cos??2sin(???3),
因为2k????2k???2,k?Z,
所以2k?+?3??+?3?2k??5?,k?Z, 6所以
1???sin(??)?1,?1?2sin(??)?2. 233故实数a的取值范围为(1,2]. 故答案为:(1,2]
13.已知函数f(x)?sin(x??)?2cos(x??)(0????)的图象关于直线x??对称,则cos2??___.
【答案】 【解析】
因为函数f(x)?sin(x??)?2cos(x??)(0????)的图象关于直线x??对称,
35????3??f???f??2??2??, ?即cos??2sin???cos??2sin?,即cos???2sin?, 即tan???1, 22221cos??sin?1?tan?34cos2?????, 则2221cos??sin?1?tan?1?541?故答案为.
14.如图,四边形ABCD中,AB?4,BC?5,CD?3,?ABC?90?,?BCD?120°,则AD的长为______
35
【答案】65?123 【解析】
连接AC,设?ACB??,则?ACD?120o??,如图:
故在Rt?ABC中,sin??45,cos?? , 414113153443?5, Qcos?120o?????cos??sin???????22224141241又在?ACD中由余弦定理有cos120o???????2?3?241?32?AD241?43?5,解得AD2?65?123,即
241AD?65?123,
故答案为:65?123. 15.在锐角?ABC中,角A,B,C的对边分别为a,b,c.且
cosAcosB23sinC??,b?23.则ab3aa?c的取值范围为_____.
【答案】(6,43] 【解析】
QcosAcosB23sinC23???bcosA?acosB?bsinC ab3a323sinBsinC, 3由正弦定理可得: sinBcosA?sinAcosB?可得:sin(A?B)?sinC?233, sinBsinC,?sinB?32又?ABC为锐角三角形,?B??,可得: 3a?c?bsinAbsinC???2?????4(sinA?sinC)?4sinA?4sin??A??43cos?A?? sinBsinB3??3??