?90??15??75?
⊥?AOC??BOD,
⊥?AOF??AOC+?COF??BOD+?COF
?2?15??75??105?
16.解:(1)能判定DF⊥AC. 因为AF平分⊥BAC, 所以⊥BAC =2⊥2. 因为DE平分⊥BDF, 所以⊥BDF=2⊥1. 因为⊥1=⊥2, 所以 ⊥BDF=⊥BAC, 所以DF⊥AC. (2)由AF平分⊥BAC, 所以⊥BAF=⊥2. 因为⊥1=⊥2, 所以 ⊥BAF=⊥1, 所以DE⊥AF.
17.证明:过点C作CE⊥AB, ⊥CE⊥AB, ⊥⊥1=⊥A, ⊥2=⊥B,
9
⊥⊥ACD=⊥1+⊥2=⊥A+⊥B, 故答案为:⊥A;⊥B;⊥A+⊥B. 18.(1)证明:⊥AB⊥CD,
⊥⊥BED=⊥EDC,⊥BAD=⊥ADC, ⊥⊥BED=⊥BAD+⊥ADE, ⊥⊥BED=2⊥BAD,
⊥⊥BAD=⊥ADE,⊥ADE=⊥ACD, ⊥AD平分⊥CDE;
(2)解:依题意设⊥ADC=⊥ADE=⊥BAD=x,
⊥⊥BED=⊥EDC=2x,⊥AED=180°﹣2x, ⊥AB⊥CD,
⊥⊥BAC+⊥ACD=180°,即⊥ACD=90°﹣x, 又⊥⊥ACD+⊥AED=165°, 即90°﹣x+180°﹣2x=165°, ⊥x=35°,
⊥⊥ACD=90°﹣x=90°﹣35°=55°
10