表5.1实际甲烷烟雾与送入单片机的电压值对应数据 浓度(%) 0 10 20 30 40 50 60 70 80 90 100
从该曲线可以看出,电压值与烟雾浓度之间是非线性关系,为了实时显示气 体浓度,需要对其进行线性化处理,使显示的烟雾浓度与实际误差 在±5%范围内。烟雾浓度与测量电压值线性化示意图如图4.5所示。 对曲线作线性化处理时,根据曲线的走势,将烟雾浓度分成7段。
直线方程
f(x) = f (xi ) + (x - xi ) f (xi ) - f (xi )/(xi – xi) i =1,2,3L,7 (5-1)
其中, f (x)为实际烟雾检测LEL浓度,x为实际烟雾检测浓度对应 的电压值,xi是区间的下限浓度对应电压值,xi是区间的上限浓度对应 电压值,f (xi)为区间下限点烟雾LEL浓度值,f (xi )为区间上限点烟雾LEL浓度值,根据公式5-1计算出7个直线方程式,如下:
(1) 0%~10%LEL f (x) = -0.50x + 3.70 (2) 10%~20%LEL f (x) = -0.50x + 3.61 3) 20%~40%LEL f (x) = -1.50x + 3.90 (4) 40%~50%LEL f (x) = -3.2x + 4.58 (5) 50%~60%LEL f (x) = -3.7x + 4.83 (6) 60%~80%LEL f (x) = -4.05x + 5.04 (7) 80%~100%LEL f (x) = -9.00x + 9.00
经实验的标定,实际烟雾浓度与显示浓度误差对比如表5.2所示:
电压(V) 3.70 3.65 3.60 3.48 3.30 2.98 2.61 2.22 1.80 1.02 0
浓(%LEL) 0 5 10 15 20 25 30 35 40 45 度浓度误差 0 3 -1 4 3 -1 5 3 2 5 浓(%LEL) 50 55 60 65 70 75 80 85 90 95 度浓度误差 5 3 0 2 3 5 -2 4 3 5 表5.2分段线性化误差数据 根据误差计算公式X = i ,在本实验中N为20,计算本报警器
显示烟雾浓度与实际浓度之间的误差为2.55%,在所规定误差范围±5%之 内。因此,本论文中的可燃性报警器满足检测要求。
5.2实验误差分析
在测量仪器的实际使用中,造成误差的来源很多,通常是多种误差源 综合作用的结果。就本仪器而言,误差来源主要有软件和硬件两个方面。
软件误差主要来自以下两个方面:
(1) A/D转换量化误差STC12C5410AD单片机的内部A/D转换器为12 bit,输入单片机模拟 电压信号0~3.7V,参考电压2.5V,A/D转换器对输入模拟信号的最大分辨率为2.5 212 ?1 = 0.00061V,因此可求得A/D转换误差为0.00061 =0.00016=0.016%。
(2) 数字滤波过程中的有限字长效应 在中位值平均滤波法数字滤波过程中,用到了乘法和除法运算,因此 在运算过程中,由于字长有限而不能保留原有数据的有效位数会出现舍入误差,由于累计计算会造成计算误差。本仪器使用数据的计算全部是由STC12C5410AD完成的,可以直接执行16×16 bit定点乘法和32÷16 bit定点除法运算,所以有限字长造成的误差对于本系统而言,可以忽略不计。
硬件误差主要来自以下四个方面: (1)
传感器非线性误差
本系统选用MQ-2型半导体陶瓷式烟雾传感器,烟雾浓度与输出电压存在一定的非线性,使用折线插值方法进行线性化处理,误差数据参见表5.1和图4.5。
(2) 电子元器件参数的离散性、温度不稳定性造成的误差
传感器输出信号一般比较微弱,需要过数据采集前置电路对其进行放 大、滤波、电平调整,满足单片机对输入信号的要求。运放误差是造成前置放大误差的主要原因,运放的输入失调电压,输入失调电流是影响电路精度的重要因素。 本设计选用高输入阻抗、低噪声的放大器,可以满足要求。另外所选的阻容器件都是经过精确测量后再焊接上去的,并经过仔细调试以获得最佳性能。
(3)
电源造成的误差
虽然系统采用直流电源供电,但电源不可避免地残留一定的交流成分而形成噪声信号.它们对测控系统的正常运行危害很大。本系统选用ACDC电源模块,将220V市电转化为5V直流电压,分别给模拟电路和数字电路供电。为了尽量减小噪声,数字地和模拟地要一点接地,每个芯片的电源就近接退耦电容。
(4)
环境、外部噪声引起的误差
环境因素包括环境温度、湿度、空气中的尘埃等。对本系统来说,空气中的成分对系统的探头和单片机及其外围电路影响很小,在进行测量时不用进行补偿。但环境温度、湿度对传感器有一定的影响。但是温湿度的影响相对于系统5%LEL的精度要求,可以忽略不计。另外,系统还受到各种外部电磁噪声的干扰,设计上,把探测器与控制器之间的信号线用屏蔽电缆连接。在电路板布线时,注意抗干扰设计。
5.3本章小结
本章介绍了烟雾报警器的误差来源,分析了系统中的硬件电路引入误差和软件所带来的误差。给出了烟雾浓度信号的实验数据及结果分析。经过现场标定及测试,达到了预期的设计效果。
结 论
烟雾检测报警器可保障生产与生活的安全,避免火灾和爆炸事故以及煤气中毒的发生,它是防火、防爆和安全生产所必备的仪器,具有广阔的市场空间与发展前景。
本论文在对烟雾传感器和报警技术进行深入研究的基础上,全面比较国内外同类产品的技术特点,合理地确定系统的设计方案。并对仪 器的整体设计和各个组成部分进行了详细的分析和设计。
本论文设计的烟雾报警器由烟雾信号采集电路与单片机控制电路两大部分构成。
根据设计要求、使用环境、成本等因素,选用MQ-2型半导体电阻式烟雾传感器。该传感器是对以烷类烟雾为主的多种烟雾有良好敏感特性的广谱型半导体敏感器件。它的灵敏度适中,具有响应与恢复特性好,长期工作稳定性、重现性、不易受环境影响及抗温湿度影响等优点。
在系统单片机控制电路的设计上,采用了高性能、高整合度的STC12C5410AD单片机作为核心芯片,充分利用了其高速数据处理能力和丰富的片内外设,实现了仪器的小型化和智能化。使仪器具有结构简单、性能稳定、体积小、成本低等优点。由于烟雾传感器需要在加热状态下工作,温度越高,反应越快,响应时间和恢复时间就越快。为提高响应时伺,保证传感器准确地、稳定地工作,需要向烟雾传感器持续供给5V的加热电压。为了保证传感器加热工作的可靠性,当传感器加热丝断线或传感器接触不良时,能够进行故障报 警。 烟雾报警器能在较宽的温度范围工作,可将烟雾浓度显示用LCD显示。当烟雾的浓度达到设定的浓度时,发出声光报警。还具有故障自诊断功能快速重复检测和延时报警功能。报警器还可以与上位机(PC)进行通信,实时传输烟雾浓度检测数据,由上位机记录保存,也可以利用上位机完成实现远程实时检测和控制等功能。
在本论文研制的报警器的基础上,可以再做适当的功能扩展,使可燃性烟雾报警器的功能更加完善,安全性更高,使用更加方便等。为了能够进一步提高安全性,可以在自动声光报警的基础上,实现带动烟雾 管道关断等功能。 应用程序以C语言编写,充分利用芯片资源,提高了测量精度和代码执行效率,减小了代码容量,采用中位值平均数字滤波算法对经A/D转换后的数字信号进行滤波处理。这种方法既可滤去脉冲干扰又可滤去小的随机干扰,不但最大限度地排除现场噪声干扰,降低烟雾报警器误报概率,而且易于在单片机中实现。 通过现场标定及测试,分析烟雾浓度信号的实验数据,计算本报警器显示烟雾浓度与实际浓度之间的误差为2.55%LEL,在所规定误差范围±5%LEL之内,满足检测要求,达到了预期的设计效果的结论。