电力系统继电保护课后习题解析答案(全)-- 下载本文

2.21 对于比.2.19复杂得多的实际电力系统,设想保护工程师是如何完成保护定值计算的?如果你今后从事保护整定计算,如何借助现在计算工具提高你的劳动效率? 答:由于继电保护整定计算多种不同的运行方式,要对不同地点、不同类型的故障进行多次计算,既要计算出各个继电保护元件不同段的动作值,还要进行灵敏度校验,计算的工作量非常的大,特别是在网络结构特别复杂的实际电力系统中,人工计算几乎不可能完成。保护工作者曾今发明了“直(交)流计算台”,用集中的电阻(阻抗)代表电网元件的电(阻)抗,按照电网的实际连接关系连接成模拟的电网,在电源点接上直(交)流电压,用仪表测量短路后的电流、电压。因为接线复杂、精度低,目前实际电力系统已经广泛推广应用继电保护整定计算软件,只要整定人员按要求输入电网结构和参数,就可以由计算机快速准确的计算出需要的短路电流及不同保护装置隔断的动作值,并可以由计算机完成灵敏度校验。

今后继电保护的整定计算主要由计算机来完成,但整定计算人员必须了解计算的原理和原则,再出现一些整定计算软件无法涵盖的特殊情况时,还素人工手动计算作为补充。 2.22 图2—17所示系统的变压器中性点可以接地,也可以不接地。比较中性电直接接地系统与中性点非直接接地系统中发生单相接地以后,在下属方面的异同: (1)零序等值网络及零序参数的组成; (2)灵虚电压分布规律;

(3)零序电流的大小及流动规律;

(4)故障电路与非故障线路零序功率方向; (5)故障电流的大小及流动规律; (6)故障后电压方向机对称性变化; (7)故障对电力系统运行的危害; (8)对保护切除故障速度的要求;

G1T1A1B23CT3T2

图2-17 系统接线图

答:(1)零序等值网络及零序参数的组成:

以线路AB末端发生单相接地为例,中性点直接接地系统零序等值图如图2—18所示。 由图2—18可见,从故障点看进去的零序阻抗为母线B引出的三个分支的并联,等值阻抗值较小,出现单相接地后系统中会有较大的零序电流。

中性点非直接接地系统,零序网络由同级电压网络中元件对地的等值电容构成通路,其零序等值图如图2—19所示。

X0.T1ABX0.ABX0.BCX0.T3X0.T2U0

图2-18 线路AB末端故障时中性点直接接地系统零序等值图

?X0.T1X0.ABX0.BCX0.T3C0.BCC0.ABC0

图2-19中性点非直接接地系统零序等值图

由图2—19可见,故障点的等值阻抗为三个对地容抗的并联,由于分布电容的容值较小、阻抗较大,因此故障点的零序等值阻抗也较大,接地不会产生较大的零序电流。 零序电压分布规律:

中性点直接接地系统中,故障点零序电压最高,距离距离故障点越远下降越多,在变压器中性点处降为0。

在中性点非直接接地系统中,若不计微小的零序电容电流在线路阻抗上产生的微小压降,则统一电压等级的整个系统的零序电压都一样(及三相变压器之间的一部分系统)。 (3)零序电流的大小及流动规律:

中性点直接接地系统中,零序电流的大小同系统的运行方式和系统各部分的零序阻抗的大小都有关系,零序电流在故障点与变压器中性点之间形成回路。

非直接接地系统中,零序电流的大小依赖于系统地相电动势和线路的对地电容。零序电流从故障点流出通过线路的对地电容流回大地。非故障元件的零序电流就是该线路本身的对地电容电流,故障元件中流过的零序电流,数值为全系统所有非故障元件对地电容电流值之和,再有消弧线圈的情况下,则是全系统所有非故障元件对地电容电流值与消弧线圈中的电感电流值相量和。

(4)故障线路与非故障线路灵虚功率方向:

中性点直接接地系统中,在故障线路上零序功率方向表现为线路流向母线;在非故障线路上,靠近故障点的一侧,零序功率方向由母线流向线路,而远离故障点的一侧,零序功率方向由线路流向母线。中性点非直接接地系统中,故障线路上电容性无功功率方向为线路流向母线;在非故障线路上,电容性无功功率方向为母线流向线路。 (5)故障电流的大小及流动规律:

中性点直接接地系统中,由于故障点和网络中变压器中性点形成回路,因此故障相电流较大。故障电流有故障电流向中性点。中性点非直接接地系统中,由于不构成短路回路而只经过对地电容形成回路,因此接地相电流很小。由于接地电流相对于负荷电流较小,基本上不影响负荷电流的分布、

(6)故障后电压的变化及对称性变化:

中性点直接接地系统中,故障后三相的相电压和线电压都不在对称。中性点非直接

接地系统中,故障后接地相电压降为0,非接地相对于低电压升高至原电压的三相之间线电压依然保持对称。 (7)故障对电力系统的危害:

中性点直接接地系统中,故障相电流很大,对系统危害很大。

3倍,但

中性点非直接接地系统中,故障相电流很小,而且三相之间的线电压任然保持对称,对负荷的供电没有影响,一般情况下,对系统危害不大。 (8)对保护切除故障速度的要求:

中性点直接接地系统中,由于接地相电流很大,为防止损坏设备,应迅速切除接地相甚至三相。中性点非直接接地系统中,由于故障点电流很小,切三项之间的线电压仍对称,可以允许再运行1~2h,同时发出信号。

2.23图2—17所示系统中变压器中性点全部不接地,如果发现单相接地,试回答: (1)比较故障线路与非故障线路中零序电流、零序电压、零序功率方向的差异。 (2)如果在接地电流过的电容电流超过10A(35KV系统)、20A(10KV系统)、30A(3~6KV系统)时,将装设消弧线圈,减小接地电流,叙述用零序电流实现选线的困难。 (3)叙述用零序功率方向实现选线的困难。 (4)叙述拉路停电选线存在的问题。

答:(1)零序电流、零序电压、零序功率的方向:

零序电流:在非故障线路中流过的电流其数值等于本身的对地电容电流,在故障线路 中流过的零序电流数值为全系统所有非故障元件对地电容电流之和。

零序电压:全系统都会出现量值等于相电压的零序电压,个点零序电压基本一样。 零序功率方向:在故障线路上,电容性无功功率方向为线路流向母线;在非故障线路上,电容性无功功率方向为母线流向线路。

(2)装设消弧线圈后,上述零序电流的分布规律发生变化,接地线路中的零序电流为消弧线圈补偿后的参与电流,其量值较小,零序过电流元件将无法整定;零序电流的量值有可能小于非故障线路的零序电流,所以零序电流群体比幅原理也将无法应用。 (3)用零序功率方向选线困难:由于一般采用的是过补偿,流经故障线路的的零序电流是流过消弧线圈的零序电流与非故障元件零序电流之差,而电容无功功率方向是由母线流向线路(实际上是电感性无功功率由线路流向母线),零序功率方向与非故障线路一致,因此无法利用功率方向来判断故障线路。 (4)拉路停电选线存在的问题:

1)需要人工操作,费时、费力,自动化程度低;

2)需要依次断开每一条线路,影响供电可靠性,若重合闸拒动,可能造成较长时间的停电。

2.24 小结下列电流保护的基本原理、使用网络并阐述其优缺点: (1)相间短路的三段式电流保护;