以省略不写。如a×b=b×a,可以写成a·b=b·a或ab=ba。
3.引导观察比较:用文字叙述和用字母表示运算定律有什么不同? 先让学生自己说一说,再启发学生小结:用字母表示运算定律,一目了然,简明易记,也便于应用。
质疑:这里的a、b、c可以表示哪些数?
通过交流,引导学生明白:这三个字母可以分别表示我们学过的任何数。
(二)教学用字母表示计算公式。
1.出示正方形的形状,问:这是什么?(正方形)
让学生先说一说正方形的面积及周长的计算公式:面积=长×边长;周长=长×4。
引导:正方形的面积和周长也可以用字母表示,一般情况下,用S表示面积,用c表示周长,a表示边长。试着写一写用字母表示正方形的周长和面积计算公式。
让学生自己尝试写出用字母表示的公式,然后再翻书看课本是怎样表示的。
S= a2 C=4a
2.提问:你有什么疑问?(学生可能对平方的表示不理解) 明确:S=a·a可以写成a2,表示2个a相乘,读作“a的平方”,所以正方形的面积公式一般写成S= a2。
出示:32,b2,52,指名让学生读一读,并说出各表示什么意思。 (32读作3的平方,表示2个3相乘,等于9;b2读作b平方,表示2个b乘;52读作5的平方,表示2个5相乘,等于25。)
出示:边长6厘米的正方形,你能计算出这个正方形的面积和周长吗? 引导学生先说出用字母表示的计算公式,再计算:正方形面积的公式是S=a2,当a=6时,S=62=6×6=36(平方厘米)。
正方形周长的公式是C=4a,当a=6时,C=4×6=24(厘米)。 三、巩固拓展
1.完成教材第56页“练习十二”第4题。
先让学生分析信息,说一说“今天卖出多少个足球”怎么表示?(48+m) 再让学生独立计算第(2)、(3)小题,集体订正。 四、课堂小结
9
师:这节课你学会了什么知识?有哪些收获? 引导归纳:
1.用字母表示运算定律,简明易记、便于应用。
2.在含有字母的式子里,字母中间的乘号可以记作“· ”,也可以省略不写。
3.a2读作:a的平方,表示2个n相乘。 作业设计:
完成教材第56页“练习十二”第6题。
此题有两个容易迷惑学生的地方:a2、62及6×2、a×2。教师一定要引导学生正确区分“平方”与“2倍”:a2表示2个a相乘,即a×a;2a表示2个a相加,即a+a。 板书设计: 用字母表示运算定律和计算公式 加法交换律 加法结合律 乘法交换律 乘法结合律 乘法分配律 课后反思: a+b=b+a (a+b)+c=a+(b+c) ab=ba (a×b)×c=a×(b×c) (a+b)×c=a×c+b×c
10
课题三 用字母表示数的应用
教学内容:用字母表示数的应用 授课时间: 年 月 日
教材分析: 例4教学用含有字母的式子表示数量关系和一个量,包括两个例子。前一个是加减数量关系的例子,后一个是乘除数量关系的例 子。两个例子都是采用归纳的思路展开教学,即先列出用具体的数表示的式子,让学生看到,这些式子每个只能表示个别现象,从而产生认知冲突,怎样才能用一个式子表示一般情况呢?由此引出含有字母的式子。 学情分析:
教学目标:
1、知识技能:使学生认识用字母表示数的意义和作用,能用字母表示数。
2、数学思考:使学生在具体情境中感受用字母表示数的必要性,向学生渗透符号化思想。
3、问题解决: 经历用字母表示数来解决实际问题的过程,掌握用字母表示数量关系的方法。
4、情感态度:在学习活动中,感受生活中处处都有数学,体验数学知识的应用价值,培养学生解决实际问题的能力,增强学习的信心。 教学重点:能熟练地用字母表示简单数量关系,解决实际问题。 教学难点:理解应用题的意图和解题思路。 教学方法:讲解法、练习法、讨论法。 授课类型:新授课 教学用具:多媒体课件 课时安排:1课时 教学过程: 一、谈话引入
师:告诉同学们一个秘密,再过几天老师的生日就要到了。同学们,你们觉得老师有多大了?
11
学生发言,猜一猜老师的年龄。
师:你们已经猜了老师的年龄,现在,让我来猜猜大家的年龄吧。(11岁)老师告诉你一条重要的信息。(出示老师比同学大22岁)你们说我几岁了?你是怎样想的?(板书:学生的岁数:11岁 老师的岁数:11+22) 二、探究新知(学生活动)
(一)用含有字母的式子表示加减关系。
1.师:现在让我们进入时空隧道,回忆过去,展望未来。 想一想,当同学们1岁时,老师几岁?你是怎么知道的? 当同学们2岁时,老师几岁?你是怎么想的?
2.师:还可以说下去吗?想想当你几岁时,老师几岁,用一个算式表示。在纸上写写看。(一生板演)
3.师:感觉怎样?还能写出更多的算式吗?能把你写的算式跟同学们交流一下吗?
学生发言,说说自己的算式与感想。
师:看来,像这样的式子还能写很多。咦,那你能用一个式子就把同学们的岁数、老师的岁数和两个岁数之间的关系简单明了地表示出来吗?
4.学生先独立尝试,然后四人小组交流。 5.汇报、交流、评价。
师:这么多算式,你最欣赏哪一个?说说理由是什么。 6.优化。A A+22表示什么?还表示什么?
7.预设:B B+22 X X +22这三个式子有什么相同的地方?(A、B、X 都是表示不确定的数,A+22 B+22 X +22不仅表示老师的年龄,还表示老师比同学大22岁这个关系)
8.师:这些算式真的可以表示老师任何一年的年龄吗?让我们来试试。
9.想一想,当A=1时,表示同学几岁,老师几岁? 当A=33时,表示同学几岁,老师几岁?
10.师:这些算式既表示出了老师和学生岁数之间的关系,又表示出了老师的岁数。那么,当老师a岁时,同学们几岁?
11.师:用a表示自己的岁数,那么你最喜欢的人的岁数怎么表示?试试看。(解读一下自己写的式子)
(二)教学教材第58页例4。
12