06-7版苏泊尔电磁炉维修手册 - 图文 下载本文

浙江苏泊尔家电制造有限公司

IGBT的保护电路

首先是过流保护措施,IGBT的短路电流的大小与栅极电压有关,在实际应用中,可以通过减少栅极电压来降低短路电流或延长承受短路电流的时间。在电磁振荡过程中,其振荡频率为30KHz~40KHz,在一个周期中,IGBT开通的时间大概是15~25s。当发生过流情况时,IGBT的C、E两端的电压会升高,使得D7相当于断开了,这个时候IGBT为导通的,B点电压为15V,二极管D6导通,然后通过R6,R7为电容器C1充电,如果过流时间超过2s后,C点的电压使得稳压二极管D5导通,导致Q3处于导通状态,在电路中选用的稳压二极管D3为10V的,这样由于D3的钳位作用,这样有效地降低了IGBT的栅极电压VGE,根据IGBT的驱动特性,可以延长IGBT的短路电流的承受时

间。

图2 电磁振荡电路图

在电磁振荡电路中,IGBT开启的时间很短,采取这样降低栅极电压的方法可以有效地保护器件。 通过对接的两个稳压二极管可以有效低钳位D点的电压不能超过15V,在D点与地线之间接上一个几十K电阻在IGBT关断的时候,二极管D4导通,则此时栅极电阻RG则相当于是R1与R2两个电阻并联的电阻,这样使得栅极电阻RG更小,这样可以有效地起到集电极电流变化过大保护作用。此外在绘制PCB时,在加粗地线的同时得注意驱动电路与IGBT栅极、发射极之间的距离,尽量减

小栅极与发射极的等效电感。

顾客服务部 800-8571477 第 5 页 共 62 页

浙江苏泊尔家电制造有限公司

图3 电磁振荡过程中的一些重要信号波形

图4 把驱动电压与反馈电压合成的效果图

IGBT在电磁振荡中的应用

图2为电磁振荡的原理图,其中包括电源主回路、同步电路、脉宽调制电路、IGBT的驱动保护电路。其中IGBT的驱动保护电路是采用的图1的方案。在完整的电磁振荡电路中还包括电源电路、电流负反馈电路、过压保护电路、以及单片机控制电路。

主回路中,IGBT受到的驱动信号为近似矩形的脉冲,当IGBT导通的时候,励磁线圈L2的电流急剧增加,能量以电感的电流形式保存起来,当IGBT截止时,励磁线圈L2与电容C3的并联回路发生谐振,电压可以超过1000V。驱动矩形脉冲信号的脉宽决定了电磁振荡工作的功率,但是这个宽度是通过同步电路和脉宽调制电路共同决定的。

同步电路必须准确监视主回路工作状况,当IGBT的集电极电压下降接近0V时,励磁线圈中电流正在反向减小,通过脉宽调制电路输出一个触发脉冲,通过同步电路和脉宽调制电路组成的电路可以使驱动脉冲再次加到IGBT的栅极,强行使IGBT导通。

在脉宽调制电路中,通过改变Vref电平的值,可以控制功率,它是由单片机输出与电流负反馈信号共同决定的。IC1和IC2为快速比较器LM319。如图2中所示,当V3>Vref时,比较器的输出端相当于开路,通过外接上拉电阻,可以得到高电平,从而驱动IGBT导通,而当V3

顾客服务部 800-8571477 第 6 页 共 62 页

浙江苏泊尔家电制造有限公司

器的输出口相当于接地,输出为低电平。

如图2为电磁振荡电路原理图,当220V的交流电经过硅桥(B1),再通过电容C1的滤波处理,转换成为直流电压信号。励磁线圈(炉盘)和电容C3为并联的,用以产生电磁振荡。

图3为电磁振荡过程中的各点的波形,这些信号都是在振荡过程中相当重要的,如果有一个信号出错,都会影响电磁振荡的正常进行,其中包括了参考电源信号V1,电压反馈信号V2,以及同步结果信号V5,控制功率的参考电压信号Vref,以及IGBT的驱动信号等。

t0-t1过程:IGBT为截止状态,L、C正在发生振荡。首先,在t0时刻,电路中的能量表现为电感L2的电流,接下来能量通过电感转向电容器,即以电流的形式向电压的形式转换,通过电容器C3与电感L2的并联回路给电容充电。当电容电压达到最大值的时候,如图3中的V2的峰值时刻,这时电容的电压能够达到1000V,电感的电流为0,接下来能量从电容C3转向电感。当V2电压低于比较的电压信号V1时,比较器1的输出发生一次翻转,此时电容C5迅速放电,使得V3的电压低于了功率参考电压Vref,由于比较器2的作用,强行使IGBT导通。

t1-t2过程:IGBT为导通状态,这个时间段内,电感L2的电流急剧增加,如图3所示,反馈电压V2接近0,比较器1的输出口V5也为低电平。在这个时候,电容C5开始充电,当这个电压(V3)高于功率参考电压Vref的时候,比较器2的输出口电压发生翻转,把IGBT的驱动电压强行拉低了,这就是一个IGBT导通的一个过程。

t0-t2的过程就是一个电磁振荡的过程,也是电磁振荡的一个周期,以后的过程与这段时间相同,如图3中,t2-t3过程与t0-t1过程完全相同,t3-t4过程与t1t2过程完全相同。t0t1的时间间隔取决于谐振线圈L2和谐振电容C3,所以这个电磁振荡的频率f主要取决于L2和C3:

电压V1、V2的选取在整个系统中相当重要,它关系到同步电路部分能否准确监测主回路的状态。在静态的时候,V2 要略高于V1,以保证比较器1的输出为高。但是如果V2过高,R14选取相对过大,在振荡的过程中,会出现电容C3的电压已降为0时不能及时驱动IGBT,使其导通,这样不能准确监测主回路的工作状态。同样如果R14与R12的匹配的值过小,会提前促使IGBT导通,这样一来由于反压过高,此时IGBT一旦导通,就会被损坏。

在反复的实验中,得到了如图4的数据,t1和t1’则并不是同一时刻,这是值得注意的,这也是相当重要的。一个振荡周期大概为40祍,如图4中所示,t1’要比t1滞后2个祍,这个滞后是允许的,但是这个时间不能太长。说明在反馈电压V2还没有降到0的时候,已经又有信号驱动IGBT,使其导通。首先这个时间是允许的,因为IGBT有一个栅极电压VGE,这个电压的具体值根据不同的器件而定的,大概为2V~5V,说明在t1’时刻IGBT不一定已经导通了。其次,这个时间不易过长,如果过长了,则会出现反馈电压V2还没有降到0,就再次驱动IGBT了,这个时候IGBT的集电极还有很高的电压,这样一来,IGBT很可能受到损坏。在实际的电路中,可以通过调节V1与V2的电压来控制t1与t1’之间的时间间隔,其中V1是一个参考电压,V2是反馈电压,通过使用比较器起到同步的作用。

谐振电容

顾客服务部 800-8571477 第 7 页 共 62 页

浙江苏泊尔家电制造有限公司

谐振电容是指电磁炉电控板上与线盘相并联的高压电容,电容范围为0.15~0.4Uf/1200V,比较好的品牌有顺德的创格、百明,听说达华的也不错。

一般情况下,在同一规格线盘下,容值越大的,电磁炉工作中心频率就越低,430材质锅具功率就越易上来。但对304材质锅具的,就会使在最小连续档温升变大。

此电容在工作中需承受超过1000VDC的电压,且会发热,如果耐温耐压不过关,则在工作过程中极易损坏。 平波、滤波电容

电磁炉电控板上在交流进线处一般放置一2Uf/275VAC的CBB电容,起滤波作用,在整流桥、扼流圈后面放置4~10Uf/275VAC的CBB电容,起直流平波作用,类似水桶原理,使后级的线盘,IGBT工作电流尽量平滑。 扼流圈

在整流桥后级,主要起两个作用,一将外界来的干扰挡住门外,二将IGBT、线盘工作时自产生的干扰关在门内,不让给跑出到市电上,从而影响其它电器工作。自身会发热,当线径小于额定电流所需时,后磁芯质量太差,或破裂或磁饱和,均会使温升增加。一般耐温130~200度。如若出现绕线匝间短路,在工作中会使短路的绕线烧黑。 电流互感器 电流互感器

起电流检测的作用,用于整机的功率控制。此器件主要是次极绕线容易断线,易容易引起整机功率波动、检不到锅,功率异常等故障。 高压取样电阻

用于电压、IGBT工作波形的检测,由于工作在高压,大电流甚至高频的工作环境中,所以售后故障率较高。是不检锅、无功率输出、误报警的主要故障原因。故障主要表现为变值、开路 散热器

散热片用于IGBT、整流桥发热器件的降温。 高频变压器

电源转换器件,如损坏,会使5V、18V等电压没有或偏差太大。 快速反应二极管

主要用于开关电源中,主要特性为工作频率高,开关导通速度快,由于有些此管与1N4007外表像,使得两种容易混料、错插件,造成故障主要有无电压输出,或工作一段时间后器件损坏。一般反应速度越快的管,管的PN结压降越小. 主芯片

用于电磁炉功能控制,类似人的大脑功能。用于电磁炉的主要有东芝、三星、HOLTEK、义隆,现代等品牌。如损坏,主要表现在无功率输出,或锅拿走依然有功率,或乱显示,炸机等。

顾客服务部 800-8571477 第 8 页 共 62 页