小初高试卷教案类
课时跟踪检测(十四) 圆周运动
[A级——基础小题练熟练快]
★1.汽车在公路上行驶时一般不打滑,轮子转一周,汽车向前行驶的距离等于车轮的周长。某国产轿车的车轮半径约为30 cm,当该型号的轿车在高速公路上匀速行驶时,驾驶员面前速率计的指针指在“120 km/h”上,可估算出该车轮的转速近似为( )
A.1 000 r/s C.1 000 r/h
B.1 000 r/min D.2 000 r/s
解析:选B 设经过时间t,轿车匀速行驶的路程x=vt,此过程中轿车轮缘上的某一点转动的路程x′=nt·2πR,其中n为车轮的转速,由x=x′可得:vt=nt·2πR,n=r/s=1 062 r/min。B正确。
★2.(2018·湖北省重点中学联考)如图所示,由于地球的自转,地球表面上P、Q两物体均绕地球自转轴做匀速圆周运动,对于P、Q两物体的运动,下列说法正确的是( )
A.P、Q两物体的角速度大小相等 B.P、Q两物体的线速度大小相等 C.P物体的线速度比Q物体的线速度大 D.P、Q两物体均受重力和支持力两个力作用
解析:选A P、Q两物体都是绕地轴做匀速圆周运动,角速度相等,即ωP=ωQ,选项A对;根据圆周运动线速度v=ωR,P、Q两物体做匀速圆周运动的半径不等,即P、Q两物体做圆周运动的线速度大小不等,选项B错;Q物体到地轴的距离远,圆周运动半径大,线速度大,选项C错;P、Q两物体均受到万有引力和支持力作用,重力只是万有引力的一个分力,选项D错。
★3.如图所示,运动员以速度v在倾角为θ的倾斜赛道上做匀速圆周运动。已知运动员及自行车的总质量为m,做圆周运动的半径为R,重力加速度为g,将运动员和自行车看作一个整体,则( )
A.受重力、支持力、摩擦力、向心力作用 mv2
B.受到的合力大小为F=R C.若运动员加速,则一定沿斜面上滑 D.若运动员减速,则一定加速沿斜面下滑
解析:选B 将运动员和自行车看作一个整体,则系统受重力、支持力、摩擦力作用,向心力是按力的作用效果命名的力,不是物体实际受到的力,A错误;系统所受合力提供K12小学初中高中
v
≈17.7 2πR
小初高试卷教案类
v2
向心力,大小为F=m,B正确;运动员加速,系统有向上运动的趋势,但不一定沿斜面
R上滑,同理运动员减速,也不一定沿斜面下滑,C、D均错误。
★4.[多选](2018·马鞍山一模)在光滑水平桌面中央固定一边长为0.1 m的小正三棱柱abc,俯视如图。长度为L=0.5 m的不可伸长细线,一端
固定在a点,另一端拴住一个质量为m=0.8 kg可视为质点的小球,t=0时刻,把细线拉直在ca的延长线上,并给小球一垂直于细线方向的水平速度,大小为v0=4 m/s。由于光滑棱柱的存在,细线逐渐缠绕在棱柱上(不计细线与三棱柱碰撞过程中的能量损失)。已知细线所能承受的最大张力为50 N。则细线断裂之前( )
A.小球的速率逐渐减小 B.小球速率保持不变 C.小球运动的路程为0.8π m D.小球运动的位移大小为0.3 m
解析:选BCD 细线断裂之前,绳子拉力与小球的速度垂直,对小球不做功,不改变小球的速度大小,故小球的速率保持不变,故A错误,B正确;细线断裂瞬间,拉力大小v02mv020.8×42
为50 N,由F=m得:r== m=0.256 m,
rF50
所以刚好转一圈细线断裂,故小球运动的路程为:
1112π
s=·2πr1+·2πr2+·2πr3=×(0.5+0.4+0.3) m=0.8π m,故C正确;小球每转120°3333半径减小0.1 m,细线断裂之前,小球运动的位移大小为0.5 m-0.2 m=0.3 m,故D正确。
5.[多选](2018·湖南六校联考)如图所示为用绞车拖物块的示意图。拴接物块的细线被缠绕在轮轴上,轮轴逆时针转动从而拖动物块。已知轮轴的半径R=0.5 m,细线始终保持水平;被拖动物块质
量m=1 kg,与地面间的动摩擦因数μ=0.5;轮轴的角速度随时间变化的关系是ω=kt,k=2 rad/s2,g取10 m/s2,以下判断正确的是( )
A.物块做匀速运动 B.细线对物块的拉力是5 N C.细线对物块的拉力是6 N
D.物块做匀加速直线运动,加速度大小是1 m/s2
解析:选CD 由题意知,物块的速度为:v=ωR=2t×0.5=1t 又v=at,故可得:a=1 m/s2,
所以物块做匀加速直线运动,加速度大小是1 m/s2。故A错误,D正确。 由牛顿第二定律可得:物块所受合外力为: F=ma=1 N,F=T-f, K12小学初中高中
小初高试卷教案类
地面摩擦阻力为:f=μmg=0.5×1×10 N=5 N
故可得物块受细线拉力为:T=f+F=5 N+1 N=6 N,故B错误,C正确。
[B级——中档题目练通抓牢]
★6.有一竖直转轴以角速度ω匀速旋转,转轴上的A点有一长为l的细绳系有质量为m的小球。要使小球在随转轴匀速转动的同时又不离开光滑的水平面,则A点到水平面的高度h最小为( )
gA.2
ωω2C.g
B.ω2g D.
g 2ω2解析:选A 以小球为研究对象,小球受三个力的作用,重力mg、水平面支持力N、绳子拉力F,在竖直方向合力为零,在水平方向所需向心力为mω2R,设绳子与竖直方向的夹角为θ,则有:R=htan θ,那么Fcos θ+N=mg,Fsin θ=mω2htan θ;当球即将离开水平面时,N=0,此时Fcos θ=mg,Fsin θ=mgtan θ=mω2htan θ,即h=
g
。故A正确。 ω27.(2018·咸阳一模)固定在竖直平面内的光滑圆弧轨道ABCD,其A点与圆心等高,D点为轨道的最高点,DB为竖直线,AC为水平线,AE为水平面,如图所示。今使小球自A点正上方某处由静止释放,且从A点进入圆弧轨道运动,只要适当调节释放点的高度,总能使球通过最高点D,则小球通过D点后( )
A.一定会落到水平面AE上 B.一定会再次落到圆弧轨道上 C.可能会再次落到圆弧轨道上 D.不能确定
vD2
解析:选A 设小球恰好能够通过最高点D,根据mg=m,得:vD=gR,知在最
R1
高点的最小速度为gR。小球经过D点后做平抛运动,根据R=gt2得:t=
2抛运动的水平位移为:x=gR·C、D错误。
8.(2018·绵阳诊断)如图所示,轻杆长3L,在杆两端分别固定质量均为m的球A和B,光滑水平转轴穿过杆上距球A为L处的O点,外界给系统一定能量后,杆和球在竖直平面内转动,球B运动到最高点时,杆对球B恰好无作用力。忽略空气阻力。则球B在最高点时( )
2R
。则平g
2R
知小球一定落在水平面AE上。故A正确,B、g=2R,
K12小学初中高中
小初高试卷教案类
A.球B的速度为零 B.球A的速度大小为2gL C.水平转轴对杆的作用力为1.5mg D.水平转轴对杆的作用力为2.5mg
解析:选C 球B运动到最高点时,杆对球B恰好无作用力,即重力恰好提供向心力,vB2
有mg=m,解得vB=2gL,故A错误;由于A、B两球的角速度相等,则球A的速度
2L大小vA=
1
2gL,故B错误;B球在最高点时,对杆无弹力,此时A球受重力和拉力的合2
vA2
力提供向心力,有F-mg=mL,解得:F=1.5mg,故C正确,D错误。
9.(2018·长沙联考)汽车试车场中有一个检测汽车在极限状态下的车速的试车道,试车道呈锥面(漏斗状),侧面图如图所示。测试的汽车质量m=1 t,车道转弯半径r=150 m,路面倾斜角θ=45°,路面与车胎的动摩擦因数μ为0.25,设路面与车胎的最大静摩擦力等于滑动摩擦力,(g取10 m/s2)求:
(1)若汽车恰好不受路面摩擦力,则其速度应为多大? (2)汽车在该车道上所能允许的最小车速。
解析:(1)汽车恰好不受路面摩擦力时,由重力和支持力的合力提供向心力,根据牛顿v2
第二定律得:mgtan θ=mr
解得:v≈38.7 m/s。
(2)当车道对车的摩擦力沿车道向上且等于最大静摩擦力时,车速最小,受力如图,根据牛顿第二定律得:
vmin2
FNsin θ-Ffcos θ=m rFNcos θ+Ffsin θ-mg=0 Ff=μFN
解得:vmin=30 m/s。
答案:(1)38.7 m/s (2)30 m/s
★10.(2018·沈阳模拟)用光滑圆管制成如图所示的轨道,竖直立于水平地面上,其中ABC为圆轨道的一部分,CD为倾斜直轨道,
二者相切于C点,已知圆轨道的半径R=1 m,倾斜轨道CD与水平地面的夹角为θ=37°,现将一小球以一定的初速度从A点射入圆管,小球直径略小于圆管的直径,取重力加速度
K12小学初中高中