2018年全国各地中考数学试题《平行四边形》解答题试题汇编(含答案解析) 下载本文

11.(2018?舟山)如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°.求证:矩形ABCD是正方形.

【分析】先判断出AE=AF,∠AEF=∠AFE=60°,进而求出∠AFD=∠AEB=75°,进而判断出△AEB≌△AFD,即可得出结论. 【解答】解:∵四边形ABCD是矩形, ∴∠B=∠D=∠C=90°, ∵△AEF是等边三角形, ∴AE=AF,∠AEF=∠AFE=60°, ∵∠CEF=45°, ∴∠CFE=∠CEF=45°,

∴∠AFD=∠AEB=180°﹣45°﹣60°=75°, ∴△AEB≌△AFD(AAS), ∴AB=AD,

∴矩形ABCD是正方形.

【点评】此题主要考查了矩形的性质,等边三角形的性质,全等三角形的判定和性质,正方形的判定,判断出∠AFD=∠AEB是解本题的关键.

12.(2018?福建)如图,?ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.

第29页(共56页)

【分析】由四边形ABCD是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.

【解答】证明:∵四边形ABCD是平行四边形, ∴OA=OC,AD∥BC, ∴∠OAE=∠OCF, 在△OAE和△OCF中,

∴△AOE≌△COF(ASA), ∴OE=OF.

【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.

13.(2018?宿迁)如图,在?ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H.求证:AG=CH.

【分析】利用平行四边形的性质得出AF=EC,再利用全等三角形的判定与性质得出答案.

【解答】证明:∵四边形ABCD是平行四边形, ∴AD=BC,∠A=∠C,AD∥BC, ∴∠E=∠F, ∵BE=DF, ∴AF=EC,

在△AGF和△CHE中

∴△AGF≌△CHE(ASA),

第30页(共56页)

∴AG=CH.

【点评】此题主要考查了平行线的性质以及全等三角形的判定与性质,正确掌握平行线的性质是解题关键.

14.(2018?张家界)在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE,垂足为F. (1)求证:DF=AB;

(2)若∠FDC=30°,且AB=4,求AD.

【分析】(1)利用“AAS”证△ADF≌△EAB即可得;

(2)由∠ADF+∠FDC=90°、∠DAF+∠ADF=90°得∠FDC=∠DAF=30°,据此知AD=2DF,根据DF=AB可得答案.

【解答】证明:(1)在矩形ABCD中,∵AD∥BC, ∴∠AEB=∠DAF, 又∵DF⊥AE, ∴∠DFA=90°, ∴∠DFA=∠B, 又∵AD=EA, ∴△ADF≌△EAB, ∴DF=AB.

(2)∵∠ADF+∠FDC=90°,∠DAF+∠ADF=90°, ∴∠FDC=∠DAF=30°, ∴AD=2DF, ∵DF=AB, ∴AD=2AB=8.

【点评】本题主要考查矩形的性质,解题的关键是掌握矩形的性质和全等三角形

第31页(共56页)

的判定与性质及直角三角形的性质.

15.(2018?盐城)在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示. (1)求证:△ABE≌△ADF;

(2)试判断四边形AECF的形状,并说明理由.

【分析】(1)根据正方形的性质和全等三角形的判定证明即可;

(2)四边形AECF是菱形,根据对角线垂直的平行四边形是菱形即可判断; 【解答】证明:(1)∵正方形ABCD, ∴AB=AD, ∴∠ABD=∠ADB, ∴∠ABE=∠ADF, 在△ABE与△ADF中

∴△ABE≌△ADF(SAS);

(2)连接AC,四边形AECF是菱形. 理由:∵正方形ABCD, ∴OA=OC,OB=OD,AC⊥EF, ∴OB+BE=OD+DF,

第32页(共56页)