2020年九年级数学中考三轮冲刺复习 同步练习:《二次函数》(含答案) 下载本文

直线BC把△PCH分成面积之比为1:4的两部分,则即

=或4,

解得:m=﹣或﹣4,

故点P的坐标为:(﹣,0)或(﹣4,0).

7.解:(1)由题可列方程组:,解得:

∴抛物线解析式为:y=x2﹣x﹣2;

(2)如图1,∠AOC=90°,AC=设直线AC的解析式为:y=kx+b,则∴直线AC的解析式为:y=﹣2x﹣2; 当△AOC∽△AEB时

,AB=4,

,解得:

=(

)2=()2=

∵S△AOC=1,∴S△AEB=∴AB×|yE|=

,AB=4,则yE=﹣,

则点E(﹣,﹣);

由△AOC∽△AEB得:∴

(3)如图2,连接BF,过点F作FG⊥AC于G,

则FG=CFsin∠FCG=∴

CF,

CF+BF=GF+BF≥BE,

当折线段BFG与BE重合时,取得最小值, 由(2)可知∠ABE=∠ACO

∴BE=ABcos∠ABE=ABcos∠ACO=4×

|y|=OBtan∠ABE=OBtan∠ACO=3×=, ∴当y=﹣时,即点F(0,﹣),

(4)①当点Q为直角顶点时(如图3): 由(3)易得F(0,﹣),

CF+BF有最小值为;

∵C(0,﹣2)∴H(0,2)

设Q(1,m),过点Q作QM⊥y轴于点M. 则Rt△QHM∽Rt△FQM ∴QM2=HM?FM,

∴12=(2﹣m)(m+), 解得:m=则点Q(1,

, )或(1,

当点H为直角顶点时:

点H(0,2),则点Q(1,2); 当点F为直角顶点时: 同理可得:点Q(1,﹣); 综上,点Q的坐标为:(1,8.解:(1)x2﹣(a+1)x+a=0, 则x1+x2=a+1,x1x2=a, 则AB=

解得:a=5或﹣3,

抛物线与y轴负半轴交于点C,故a=5舍去,则a=﹣3, 则抛物线的表达式为:y=x2+2x﹣3…①;

=(a﹣1)2=16,

)或(1,

)或Q(1,2)或Q(1,﹣).

(2)由y=x2+2x﹣3得:点A、B、C的坐标分别为:(﹣3,0)、(1,0)、(0,﹣3), 设点E(m,m2+2m﹣3),OA=OC,故直线AC的倾斜角为45°,EF∥AC, 直线AC的表达式为:y=﹣x﹣3,

则设直线EF的表达式为:y=﹣x+b,将点E的坐标代入上式并解得: 直线EF的表达式为:y=﹣x+(m2+3m﹣3)…②, 联立①②并解得:x=m或﹣3﹣m,

故点F(﹣3﹣m,m2+4m),点M、N的坐标分别为:(m,﹣m﹣3)、(﹣3﹣m,m+3), 则EF=

(xF﹣xE)=

(﹣2m﹣3)=MN,

)m﹣6

四边形EMNF的周长S=ME+MN+EF+FN=﹣2m2﹣(6+4∵﹣2<0,故S有最大值,此时m=﹣故点E的横坐标为:﹣

(3)①当点Q在第三象限时, ﹣﹣﹣﹣当QC平分四边形面积时, 则|xQ|=xB=1,故点Q(﹣1,﹣4); ﹣﹣﹣﹣当BQ平分四边形面积时, 则S△OBQ=×1×|yQ|,S四边形QCBO=则2(×1×|yQ|)=

1×3+×3×|xQ|,

1×3+×3×|xQ|,

);

解得:xQ=﹣,故点Q(﹣,﹣②当点Q在第四象限时, 同理可得:点Q(

);

)或(

).

综上,点Q的坐标为:(﹣1,﹣4)或(﹣,﹣

9.解:(1)y=﹣x+3,令x=0,则y=3,令y=1,则x=4, 故点B、C的坐标分别:(4,0)、(0,3),则BC=5,

将点B、C的坐标代入抛物线函数表达式并解得:a=﹣,b=, 故抛物线的表达式为:y=﹣x2+x+3;