?200?160????120?160????40?????40??0.80
¡ß P (120£¼X¡Ü200)=?????????¦Ò¦Ò?????¦Ò??¦Ò?ÓÖ¶Ô±ê×¼Õý̬·Ö²¼ÓЦÕ(£x)=1£¦Õ(x)
40???40???0.80 ¡à ÉÏʽ±äΪ??????1?????¦Ò???¦Ò????40?±ãµÃ:??40??0.9
½â³ö??????¦Ò??¦Ò? ÔÙ²é±í£¬µÃ
4040?1.281¦Ò??31.25 ¦Ò1.28130.[¶þÊ®Æß] ÉèËæ»ú±äÁ¿XµÄ·Ö²¼ÂÉΪ£º X£º£2£¬
P£º
£1£¬ 0£¬
1£¬
3
1£¬ 5111£¬ £¬ £¬ 6515 (£1)2
(0)2
11 30(1)2
(3)2
ÇóY=X 2µÄ·Ö²¼ÂÉ
¡ß Y=X 2£º(£2)2 P£º
1 5111 6515 4
9
11 30ÔÙ°ÑX 2µÄȡֵÏàͬµÄºÏ²¢£¬²¢°´´ÓСµ½´óÅÅÁУ¬¾ÍµÃº¯ÊýYµÄ·Ö²¼ÂÉΪ£º ¡à Y£º 0 P£º
1
111111 ?561553031.[¶þÊ®°Ë] ÉèËæ»ú±äÁ¿XÔÚ£¨0£¬1£©ÉÏ·þ´Ó¾ùÔÈ·Ö²¼
£¨1£©ÇóY=eXµÄ·Ö²¼ÃܶÈ
?1¡ß XµÄ·Ö²¼ÃܶÈΪ£ºf(x)???0
Y=g (X) =eXÊǵ¥µ÷Ôöº¯Êý X=h (Y)=lnY£¬·´º¯Êý´æÔÚ
0?x?1
xΪÆäËûÓÖ ÇÒ
¦Á = min[g (0), g (1)]=min(1, e)=1
??max[g (0), g (1)]=max(1, e)= e
?f[h(y)]?|h'(y)|?1?1?¡à YµÄ·Ö²¼ÃܶÈΪ£º¦×(y)??y?0?£¨2£©ÇóY=£2lnXµÄ¸ÅÂÊÃܶȡ£ ¡ß ÓÖ
Y= g (X)=£2lnX Êǵ¥µ÷¼õº¯Êý
?Y21?y?eyΪÆäËû
X?h(Y)?e ·´º¯Êý´æÔÚ¡£
ÇÒ ¦Á = min[g (0), g (1)]=min(+¡Þ, 0 )=0
¦Â=max[g (0), g (1)]=max(+¡Þ, 0 )= +¡Þ
yy?1?21?2?e?f[h(y)]?|h'(y)|?1??e¡à YµÄ·Ö²¼ÃܶÈΪ£º¦×(y)??22?0?0?y???yΪÆäËû
32.[¶þÊ®¾Å] ÉèX¡«N£¨0£¬1£© £¨1£©ÇóY=eXµÄ¸ÅÂÊÃÜ¶È ¡ß XµÄ¸ÅÂÊÃܶÈÊÇf(x)??1e2¦Ðx22,???x???
Y= g (X)=eX Êǵ¥µ÷Ôöº¯Êý ÓÖ ÇÒ
X= h (Y ) = lnY ·´º¯Êý´æÔÚ
¦Á = min[g (£¡Þ), g (+¡Þ)]=min(0, +¡Þ)=0
¦Â = max[g (£¡Þ), g (+¡Þ)]= max(0, +¡Þ)= +¡Þ ¡à YµÄ·Ö²¼ÃܶÈΪ£º
(lny)2???f[h(y)]?|h'(y)|?1e2?1¦×(y)??y2¦Ð?0?0?y??? yΪÆäËû£¨2£©ÇóY=2X2+1µÄ¸ÅÂÊÃܶȡ£
ÔÚÕâÀY=2X2+1ÔÚ(+¡Þ£¬£¡Þ)²»Êǵ¥µ÷º¯Êý£¬Ã»ÓÐÒ»°ãµÄ½áÂÛ¿ÉÓᣠÉèYµÄ·Ö²¼º¯ÊýÊÇFY£¨y£©£¬ Ôò FY ( y)=P (Y¡Üy)=P (2X2+1¡Üy) =P??µ±y<1ʱ£ºFY ( y)=0
???y?1?X?2y?12?? ???µ±y¡Ý1ʱ£ºFy(y)?P????¹ÊYµÄ·Ö²¼ÃܶȦ×( y)ÊÇ£º
y?1?X?2y?1???2???y?12?y?121e2¦Ð?x22dx
µ±y¡Ü1ʱ£º¦×( y)= [FY ( y)]' = (0)' =0
y?12y?12?µ±y>1ʱ£¬¦×( y)= [FY ( y)]' =?????12?ex2?2??dx? ???1 =e2¦Ð(y?1)y?14
£¨3£©ÇóY=| X |µÄ¸ÅÂÊÃܶȡ£
¡ß YµÄ·Ö²¼º¯ÊýΪ FY ( y)=P (Y¡Üy )=P ( | X |¡Üy) µ±y<0ʱ£¬FY ( y)=0
µ±y¡Ý0ʱ£¬FY ( y)=P (| X |¡Üy )=P (£y¡ÜX¡Üy)=¡à YµÄ¸ÅÂÊÃܶÈΪ£º
µ±y¡Ü0ʱ£º¦×( y)= [FY ( y)]' = (0)' =0
?y?y?1e2¦Ðx22dx
?y2x2?y1???2µ±y>0ʱ£º¦×( y)= [FY ( y)]' =?e2dx??e2
??y2¦Ð?¦Ð??33.[ÈýÊ®] £¨1£©ÉèËæ»ú±äÁ¿XµÄ¸ÅÂÊÃܶÈΪf (x)£¬ÇóY = X 3µÄ¸ÅÂÊÃܶȡ£
?¡ß ÓÖ ÇÒ
Y=g (X )= X 3 ÊÇXµ¥µ÷Ôöº¯Êý£¬ X=h (Y ) =Y£¬·´º¯Êý´æÔÚ£¬
¦Á = min[g (£¡Þ), g (+¡Þ)]=min(0, +¡Þ)=£¡Þ
13 ¦Â = max[g (£¡Þ), g (+¡Þ)]= max(0, +¡Þ)= +¡Þ ¡à YµÄ·Ö²¼ÃܶÈΪ£º
1321? ¦×( y)= f [h ( h )]2| h' ( y)| = f(y)?y3,???y???,µ«y?0
3?(0)?0
£¨2£©ÉèËæ»ú±äÁ¿X·þ´Ó²ÎÊýΪ1µÄÖ¸Êý·Ö²¼£¬ÇóY=X 2µÄ¸ÅÂÊÃܶȡ£
?e?x·¨Ò»£º¡ß XµÄ·Ö²¼ÃܶÈΪ£ºf(x)???0 Y=x2ÊǷǵ¥µ÷º¯Êý
µ± x<0ʱ y=x? ·´º¯ÊýÊÇx??y µ± x<0ʱ y=x2 ? x?2
x?0x?0
y=x2 y y
O ¡à Y¡« fY (y) = f(?y)(?y)??f(y)(y)? £y y x
?0?1e?? =?2y??0y?12ye?y,y?0y?0
·¨¶þ£ºY~FY(y)?P(Y?y)?P(?y?X?y)?P(X?y)?P(X??y)
?y?xedx?0?1?e?? ?0??0?y,,y?0y?0
?1e??¡à Y¡« fY (y) =?2y??0y,,y?0.y?0.
34.[Èýʮһ] ÉèXµÄ¸ÅÂÊÃܶÈΪ
?2x0?x?¦Ð? f(x)??¦Ð2?xΪÆäËû?0ÇóY=sin XµÄ¸ÅÂÊÃܶȡ£
¡ß FY ( y)=P (Y¡Üy) = P (sinX¡Üy) µ±y<0ʱ£ºFY ( y)=0
µ±0¡Üy¡Ü1ʱ£ºFY ( y) = P (sinX¡Üy) = P (0¡ÜX¡Üarc sin y»ò¦Ð£arc sin y¡ÜX¡Ü¦Ð) =µ±1 arcsiny?02xdx?¦Ð2?2xdx ¦Ð?arcsiny¦Ð2¦Ð?0 ?arcsiny02xdx?2¦Ð ??2x?dx? ¦Ð?arcsiny¦Ð2?¦Ð2¦Ð1?y21¡Üyʱ£¬¦×( y )=[ FY ( y)]' = (1)? = 0 36.[ÈýÊ®Èý] ijÎïÌåµÄζÈT (oF )ÊÇÒ»¸öËæ»ú±äÁ¿£¬ÇÒÓÐT¡«N£¨98.6£¬2£©£¬ÊÔÇó¦È(¡æ)