七年级数学一元一次方程解决问题练习及答案 下载本文

一元一次方程应用题

1.列一元一次方程解应用题的一般步骤 (1)审题:弄清题意.(

(2)找出等量关系:找出能够表示本题含义的相等关系.

(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,?然后利用已找出的等量关系列出方程. (4)解方程:解所列的方程,求出未知数的值

(5)检验,写答案:检验所求出的未知数的值是否是方程的解,?是否符合实际,检验后写出答案.

2.和差倍分问题 增长量=原有量×增长率 现在量=原有量+增长量 3.等积变形问题

常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变. ①圆柱体的体积公式 V=底面积×高=S·h=?r2h ②长方体的体积 V=长×宽×高=abc 4.

数字问题 一般可设个位数字为a,十位数字为b,百位数字为c. 十位数可表示为10b+a, 百位数可表示为100c+10b+a. 然后抓住数字间或新数、原数之间的关系找等量关系列方程.

5.市场经济问题

(1)商品利润=商品售价-商品成本价 (2)商品利润率=商品利润商品成本价×100% (3)商品销售额=商品销售价×商品销售量

(4)商品的销售利润=(销售价-成本价)×销售量

(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.

6.行程问题:路程=速度×时间 时间=路程÷速度 速度=路程÷时间 (1)相遇问题: 快行距+慢行距=原距 (2)追及问题: 快行距-慢行距=原距

(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度

逆水(风)速度=静水(风)速度-水流(风)速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.

7.工程问题:工作量=工作效率×工作时间 完成某项任务的各工作量的和=总工作量=1

8.储蓄问题 利润=每个期数内的利息本金×100% 利息=本金×利率×期数

经典练习

1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?

2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?

3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80?毫米的长

方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,?≈3.14).

4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.

5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,?这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?

6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.?已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,?求这一天有几个工人加工甲种零件.

7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.

(1)某户八月份用电84千瓦时,共交电费30.72元,求a.

(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦??应交电费是多少元?

8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3?种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.

(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案. (2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,?销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?