大学物理学北邮第四版第一到六章课后题答案 下载本文

能表达式

22 Ek?mc?m0c。

再根据相对论中运动质量和静止质量的关系 m1?m01?vc212, m2?m01?vc222。

可得出

Ek?m02v21?2c?m0v121?2c?4.7?10?14(J),

由功能关系可知,这就是所需要做的功。

4.17 粒子的静止质量为m0,当其动能等于其静能时,其质量和动量各等于多少? 解:由题意有

Ek?m0c2,

22再根据相对论中的动能关系:Ek?mc?m0c,则有

m?2m0。

由动量和能量的关系, pc?得动量为

p?3m0c。

4.18 太阳的辐射能来自其内部的核聚变反应。太阳每秒钟向周围空间辐射出的能量约为

(mc2)2?(m0c2)2,

5?1026J/s,由于这个原因,太阳每秒钟减少多少质量?把这个质量同太阳目前的质量2?1030Kg作比较,估算太阳的寿命是多少年。

解:由质能关系

?E??mc2,

可得出太阳每秒钟减少的质量为

?E5?1026 ?m?2??5.6?109(kg/s)。 82c(3?10)进而,可估计太阳的寿命是

2?1030?1.13?1013(年) n?。 95.6?10?3600?24?365习题5

5.1选择题

(1)一物体作简谐振动,振动方程为x?Acos(?t??2),则该物体在t?0时

刻的动能与t?T/8(T为振动周期)时刻的动能之比为: (A)1:4 (B)1:2 (C)1:1 (D) 2:1

[答案:D]

(2)弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为 (A)kA2 (B) kA2/2 (C) kA2//4 (D)0

[答案:D]

(3)谐振动过程中,动能和势能相等的位置的位移等于 (A)?AA (B) ? 423A (D) ?2[答案:D]

(C) ?2A 2

5.2 填空题

(1)一质点在X轴上作简谐振动,振幅A=4cm,周期T=2s,其平衡位置取作坐标原点。若t=0时质点第一次通过x=-2cm处且向X轴负方向运动,则质点第二次通过x=-2cm处的时刻为____s。

[答案:

2s] 3

(2)一水平弹簧简谐振子的振动曲线如题5.2(2)图所示。振子在位移为零,速度为-?A、加速度为零和弹性力为零的状态,对应于曲线上的____________点。振子处在位移的绝对值为A、速度为零、加速度为-?2A和弹性力为-KA的状态,则对应曲线上的____________点。

题5.2(2) 图

[答案:b、f; a、e]

(3)一质点沿x轴作简谐振动,振动范围的中心点为x轴的原点,已知周期为T,振幅为A。

(a)若t=0时质点过x=0处且朝x轴正方向运动,则振动方程为x=___________________。

(b) 若t=0时质点过x=A/2处且朝x轴负方向运动,则振动方程为x=_________________。

[答案:x?Acos(2?t/T??/2); x?Acos(2?t/T??/3)]

5.3 符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动: (1)拍皮球时球的运动;

(2)如题5.3图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很 短).

题5.3图 题5.3图(b)

解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统是在自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系统的运动微分方程能用

d2???2??0 2dt描述时,其所作的运动就是谐振动.

(1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置; 第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线性回复力.

(2)小球在题5.3图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点O;而小球在运动中的回复力为?mgsin?,如题5.3图(b)中所示,

?S→0,所以回复力为?mg?.式中负号,表示回复力的方向始终与R角位移的方向相反.即小球在O点附近的往复运动中所受回复力为线性的.若以小球为对象,则小球在以O?为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切线方向上

因?S<<R,故??有

d2?mR2??mg?

dt令??2g,则有 Rd2?2????0 2dt

5.4 弹簧振子的振幅增大到原振幅的两倍时,其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化?

解:弹簧振子的振动周期、振动能量、最大速度和最大加速度的表达式分别为

T?m1,E?kA2 ?k2vm??A,am??2A?2?2?所以当振幅增大到原振幅的两倍时,振动周期不变,振动能量增大为原来的4倍,最大速度增大为原来的2倍,最大加速度增大为原来的2倍。

5.5单摆的周期受哪些因素影响?把某一单摆由赤道拿到北极去,它的周期是否变化?

解:单摆的周期为

T?2???2?l g因此受摆线长度和重力加速度的影响。把单摆由赤道拿到北极去,由于摆线长度不变,重力加速度增大,因此它的周期是变小。

5.6简谐振动的速度和加速度在什么情况下是同号的?在什么情况下是异号的?加速度为正值时,振动质点的速率是否一定在增大? 解:简谐振动的速度和加速度的表达式分别为

v???Asin(?t??0)a???Acos(?t??0)2

当sin(?t??0)与cos(?t??0)同号时,即位相在第1或第3象限时,速度和加速度同号;当sin(?t??0)与cos(?t??0)异号时,即位相在第2或第4象限时,速度和加速度异号。

加速度为正值时,振动质点的速率不一定增大。

5.7 质量为10?10kg的小球与轻弹簧组成的系统,按x?0.1cos(8?t?规律作谐振动,求:

?32?)3(SI)的