初中数学几何模型大全+经典题型(含答案) 下载本文

4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。

经典难题(二)

1.(1)延长AD到F连BF,做OG⊥AF,

又∠F=∠ACB=∠BHD,

可得BH=BF,从而可得HD=DF, 又

AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM (2)连接OB,OC,既得∠BOC=1200, 从而可得∠BOM=600, 所以可得OB=2OM=AH=AO,

得证。

3.作OF⊥CD,OG⊥BE,连接OP,OA,OF,AF,OG,AG,OQ。 由于

ADACCD2FDFD====, ABAEBE2BGBG 由此可得△ADF≌△ABG,从而可得∠AFC=∠AGE。

又因为PFOA与QGOA四点共圆,可得∠AFC=∠AOP和∠AGE=∠AOQ,

∠AOP=∠AOQ,从而可得AP=AQ。

4.过E,C,F点分别作AB所在直线的高EG,CI,FH。可得PQ=

EG+FH2。

由△EGA≌△AIC,可得EG=AI,由△BFH≌△CBI,可得FH=BI。 从而可得PQ=

AI+BI2=

AB2,从而得证。

经典难题(三)

1.顺时针旋转△ADE,到△ABG,连接CG.

由于∠ABG=∠ADE=900+450=1350

从而可得B,G,D在一条直线上,可得△AGB≌△CGB。 推出AE=AG=AC=GC,可得△AGC为等边三角形。 ∠AGB=300,既得∠EAC=300,从而可得∠A EC=750。 又∠EFC=∠DFA=450+300=750. 可证:CE=CF。

2.连接BD作CH⊥DE,可得四边形CGDH是正方形。 由AC=CE=2GC=2CH,

可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,

又∠FAE=900+450+150=1500, 从而可知道∠F=150,从而得出AE=AF。