永城化工厂110kV降压变电所一次系统设计
和经济性。
3.2 电气配置
3.2.1 隔离开关的配置
(1)中小型发电机出口一般应装设隔离开关:容量为220MW及以上大机组与双绕组变压器为单元连接时,其出口不装设隔离开关,但应有可拆连接点[11]。
(2)在出线上装设电抗器的6—10KV配电装置中,当向不同用户供电的两回线共用一台断路器和一组电抗器时,每回线上应各装设一组出线隔离开关[11]。
(3)接在发电机、变压器因出线或中性点上的避雷器不可装设隔离开关。 (4)中性点直接接地的普通型变压器均应通过隔离开关接地;自藕变压器的中性点则不必装设隔离开关[12]。
3.2.2电压互感器的配置
(1)电压互感器的数量和配置与主接线方式有关,并应满足测量、保护、同期和自动装置的要求。电压互感器的配置应能保证在运行方式改变时,保护装置不得失压,同期点的两侧都能提取到电压[11]。
(2)6—220KV电压等级的每组母线的三相上应装设电压互感器。旁路母线上是否需要装设电压互感器,应视各回出线外侧装设电压互感器的情况和需要确定。
(3)当需要监视和检测线路侧有无电压时,出线侧的一相上应装设电压互感器[11]。
(4)当需要在330KV及以下主变压器回路中提取电压时,可尽量利用变压器电容式套管上的电压抽取装置[15]。
3.2.3 电流互感器的配置
(1)凡装有断路器的回路均应装设电流互感器其数量应满足测量仪表、保护和自动装置要求。
(2)在未设断路器的下列地点也应装设电流互感器:发电机和变压器的中性点、发电机和变压器的出口、桥形接线的跨条上等。
(3)对直接接地系统,一般按三相配置。对非直接接地系统,依具体要求按两相或三相配置。
5
永城化工厂110kV降压变电所一次系统设计
(4)一台半断路器接线中,线路—线路串可装设四组电流互感器,在能满足保护和测量要求的条件下也可装设三组电流互感器。线路—变压器串,当变压器的套管电流互感器可以利用时,可装设三组电流互感器[11]。
3.2.4 避雷器的装置
(1)配电装置的每组母线上,应装设避雷器,但进出线装设避雷器时除外。 (2)旁路母线上是否需要装设避雷器,应视在旁路母线投入运行时,避雷器到被保护设备的电气距离是否满足要求而定。
(3)220KV及以下变压器到避雷器的电气距离超过允许值时,应在变压器附近增设一组避雷器。
(4)三绕组变压器低压侧的一相上宜设置一台避雷器。 (5)下列情况的变压器中性点应装设避雷器
1) 直接接地系统中,变压器中性点为分级绝缘且装有隔离开关时。 2) 直接接地系统中,变压器中性点为全绝缘,但变电所为单进线且为 单台变压器运行时。
3) 接地和经消弧线圈接地系统中,多雷区的单进线变压器中性点上。 (6)发电厂变电所35KV及以上电缆进线段,在电缆与架空线的连接处应装设避
雷器。
(7)SF6全封闭电器的架空线路侧必须装设避雷器。 (8)110—220KV线路侧一般不装设避雷器[11]。
4 做好变电站的防雷和保护接地
变电所的防雷设计应做到设备先进、保护动作灵敏、安全可靠、维护试验方便,并在在保证可靠性的前提下力求经济性。[14]防止雷电直击的主要电气设备是避雷针,避雷针由接闪器和引下线、接地装置等构成。[13]避雷针的位置确定,是变电所防雷设计的关键步骤。首先应根据变电所电气设备的总平面布置图确定,避雷针的初步选定安装位置与设备的电气距离应符合各种规程范围的要求,初步确定避雷针的安装位置后再根据公式进行,校验是否在保护范围之内。[13]同时做好变电站的接地电网,也可以有效的防止电力事故的发生。
6
永城化工厂110kV降压变电所一次系统设计
4.1 所用变的设置
为保证重要变电所的安全用电,所以需装设两台所用变以备用。为了保证供电的可靠性应在低电压等级即10KV母线上各装设一台变压器(每段各一台)。这样就可以避免由于低压线路故障率较高所引起的所内停电事故,从而保证变电所的不间断供电[11]。
4.2 继电保护的配置
在电力系统的运行中,变电所可能出现各种故障和不正常运行状态。最常见同时也是最危险的故障是各种类型的短路,其中包括相间短路和接地短路。此外,还可能发生输电线路断线,旋转电机、变压器同一绕组的匝间短路等,这样,供电系统就不能顺利完成输送电。此时,继电保护就显的很重要。继电保护系统的主要作用:保护作用、控制作用 、监视作用 、事故分析与事故处理作用、自动化作用。继电保护装置在电力系统中的主要作用是通过预防事故或缩小事故范围来提高系统可靠性,是电力系统中重要的组成部分,是保证电力系统安全可靠运行的重要技术措施之一。在现在电力系统中,如果没有继电保护装置,就无法维持系统正常运行[7]。
鉴于其在系统中的重要性,有如下要求:(1)选择性,即仅将故障元件从系统中切除,保证非故障元件正常运行,提高系统供电可靠性;(2)速动性,快速地切除故障元件可以提高系统并列运行的可靠性,减少用户在电压降低的情况下的工作时间,以缩小故障元件的损坏程度。只要求速动性是不行的,要根据电力系统的接线以及被保护元件的具体情况来确定,例如当发电厂或母线电压低于允许值时,继电保护动作等;(3)灵敏性,它要求保护装置在事先规定的保护范围内发生故障时,不论短路点的位置,短路类型,以及短路点是否有过渡电阻,都应敏锐感觉,正确反应;(4)可靠性,它主要针对保护装置本身的质量和运行维护水平而言,一般来说,保护装置的组成元件的质量越高,回路中继电器的触电就越少,保护装置的可靠性就越高,同时,正确的设计和整定计算,保证安装、调试试验的质量,提高运行维护水平,对提高保护装置的可靠性有重要作用[9]。因此在电气设计中将继电保护配置好是一个很重要的环节,同时我们应该按照要求进行合理配置。
现如今在我国,变电所设计还存在很多不足,面临很多问题比如损耗和可靠
7
永城化工厂110kV降压变电所一次系统设计
性问题。我国经济的发展也电力带来了很多问题比如:(1)对电能的需求日益增长,城市和农村用电密度每天都在变化,所以给变电所的容量设计带来了很多麻烦。(2)我国国土面积大,尤其是西北地区电力用户较分散,电力的传输需要导线,这样就会使线路的功率损耗增加。(3)建立稳定的变电所必须占用较大的土地,然而在城市土地单价昂贵环境要求严格在用电用户稠密的地域建设变电所相对较困难,从而增加了在线路上的电能损耗。以上所说的问题都是我国先目前变电手面临的问题,这些问题正期待我们的解决[2]。
如果上面所述的部分我们都能够很好的综合考虑那么变电站的初步设计就会相对来说比较安全经济。这也就达到我们的提高电力系统的安全可靠性和运行效率,从而达到降低生产成本提高经济效益的目的。
8