九年义务教育全日制初级中学数学教学大纲 下载本文

比相等则两三角形相似的判定定理,以及一对直角边和斜边成比例则两直角三角形相似的判定定理。

(3)理解相似比的概念和相似三角形的对应高的比等于相似比的性质。 (4)会按已知相似比作一个三角形与已知三角形相似。 (六)解直角三角形 1.锐角三角函数

锐角三角函数。锐角三角函数值。,,角的三角函数值。 具体要求:

(1)了解锐角三角函数的概念,能够正确地应用,,,表示直角三角形中两边的比。

(2)会用科学计算器(尚无条件的学校可使用算表)由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角。 (3)熟记,,角的三角函数值,会计算含有特殊角的三角函数式的值,会由一个特殊锐角的三角函数值,求出它对应的角度。 2.解直角三角形

解直角三角形。解直角三角形的应用。 实习作业。 具体要求:

(1)掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形。

(2)会用解直角三角形的有关知识解某些简单的实际问题。

(3)通过与三角形或四边形有关的实习作业,培养学生解决实际问题的能力和用数学的意识。 (七)圆 1.圆的有关性质

圆。圆的对称性。点和圆的位置关系。不在同一直线上的三点确定一个圆。三角形的外接圆。垂径定理及其逆定理。圆心角、弧、弦、弦心距之间的关系。圆周角定理。圆内接四边形的性质。*轨迹。*反证法。 具体要求:

(1)理解圆、等圆、等弧等概念及圆的对称性。 (2)掌握点和圆的位置关系。

(3)会用尺规作经过不在同一直线上三点的圆。了解三角形的外心的概念。 (4)掌握垂径定理及其逆定理(平分非直径的弦的直径垂直于弦且平分弦所对的弧,平分弦所对的一条弧的直径垂直平分弦,弦的垂直平分线经过圆心等性质)。(5)掌握圆心角、弧、弦、弦心距及圆周角之间的主要关系;掌握圆周角定理以及直径所对的圆周角是直角,的圆周角所对的弦是直径等性质,并会用它们进行论证和计算,会作两条线段的比例中项。

(6)掌握圆的内接四边形的对角互补,外角等于它的内对角的性质。 *(7)了解轨迹的概念和几个简单轨迹。 *(8)了解反证法。 2.直线和圆的位置关系

直线和圆的位置关系。切线的判定和性质。三角形的内切圆。 *切线长定理。*弦切角定理。*相交弦定理。*切割线定理。 具体要求:

(1)掌握直线和圆的位置关系。

(2)掌握经过半径的外端且垂直于这条半径的直线是圆的切线,切点和圆心的连线与切线垂直等性质。(3)会过一点画圆的切线。会用尺规作三角形的内切圆。了解三角形内心的概念。*(4)掌握切线长定理、弦切角定理、相交弦定理、切割线定理,并会利用它们进行有关的计算。

(5)通过圆周角定理的证明,使学生了解分情况证明数学命题的思想和方法。

3.圆和圆的位置关系

圆和圆的位置关系。两圆的连心线的性质。两圆的公切线。 相切在作图中的应用。 具体要求:

(1)掌握圆和圆的位置关系。

(2)掌握相交两圆的连心线垂直平分两圆的公共弦,相切两圆的连心线经过切点等性质。

(3)会画两圆的内、外公切线;了解两圆的外公切线的长相等,两圆的内公切线的长相等等性质,了解两圆公切线长的求法。

*(4)掌握两圆的外公切线的长相等、内公切线的长相等的性质。

(5)会利用直线和圆相切、圆和圆相切的性质,画出直线和圆弧、圆弧和圆弧连接的图形。

(6)通过点和圆、直线和圆、圆和圆的位置关系的教学,对学生进行事物之间是相互联系和运动变化的观点的教育。 4.正多边形和圆

正多边形和圆。正多边形的有关计算。等分圆周。 探究性活动:例如镶嵌。 圆周长。弧长。

圆的面积。扇形的面积。圆柱和圆锥的侧面展开图、侧面积。 具体要求:

(1)理解正多边形、正多边形的中心、半径、边心距、中心角等概念。会将正多边形边长、半径、边心距和中心角的有关计算的问题转变为解直角三角形的问题。

(2)了解用量角器等分圆心角来等分圆周的方法,会用尺规作圆内接正方形和正六边形。

(3)通过对镶嵌平面图形的探究,了解正多边形在镶嵌中所起的作用。运用多种平面图形进行镶嵌设计,拓宽学生的数学和美术知识。 (4)会计算圆的周长、弧长及简单组合图形的周长。

(5)会计算圆的面积、扇形的面积及简单组合图形的面积。

(6)了解圆住、圆锥的侧面展开图分别是矩形和扇形,会计算圆柱和圆锥的侧面积和全面积。(7)通过圆和正多边形的教学,进一步提高综合运用知识发现、提出、分析和解决问题的能力。△5.识图初步 正投影。视图。 基本几何体的视图。 简单零件图。 具体要求:

(1)了解正投影,视图 主视图、俯视图、左视图的意义。

(2)会画基本几何体的二视图或三视图。

(3)会描绘含有直线和圆弧,圆弧和圆弧连接的轮廓线的简单零件图。