物理化学上册习题答案 下载本文

物理化学上册习题解(天津大学第五版)

?Ssys??nRln(p2/p1)

= {- 1×8.314×ln(50/100)} J·K = 5.764 J·K

-1

-1

?Samb??Qsys/Tamb= (-1247÷300)J·K-1= - 4.157 J·K-1

△S iso= △Ssys + △Samb = {5.764 +(- 4.157)} J·K = 1.607 J·K (3)△U = 0,W = 0,Q=0

-1

-1

?Samb??Qsys/Tamb= 0

因熵是状态函数,故有

?Ssys?nRln(V2/V1)?nRln(2V1/V1)

= {1×8.314×ln2 } J·K = 5.764 J·K

-1

△S iso= △Ssys + △Samb = 5.764 J·K

3

3-11 某双原子理想气体从T1=300K,p1= 100 kPa,V1= 100 dm的始态,经不同过程变化到下述状态,求各过程的△S。

3

(1)T2 = 600K,V2= 50 dm;(2)T2 = 600K,p2= 50 kPa;

3

(3)p2= 150 kPa,V2= 200 dm; 解:先求该双原子气体的物质的量n:

-1

-1

pV?100?103?100?10?3??n???mol?4.01mol ??RT?8.314?300?(1)?S?nCV,mln(T2/T1)?nRln(V2/V1) ??4.01???5R60050?-1?1ln?4.01?Rln?J?K= 34.66 J·K 2300100?(2)?S?nCp,mln(T2/T1)?nRln(p2/p1) ??4.01???7R60050?-1?1ln?4.01?Rln?J?K= 103.99 J·K 2300100?(3)?S?nCV,mln(p2/p1)?nCp,mln(V2/V1) ??4.01???5R1507R100?-1?1ln?4.01?ln?J?K= 114.65 J·K 21002200?3

3-12 2 mol双原子理想气体从始态300K,50 dm,先恒容加热至 400 K,再恒压加热至体积

3

增大至 100m,求整个过程的Q,W,△U,△H及△S。

解:过程为

2mol 双原子气体2mol 双原子气体2mol 双原子气体恒容加热恒压加热 T1?300K?????T0?400K?????T2??50dm3,p150dm3,p0100dm3,p0p1?2RT/V1?{2?8.3145?300/(50?10?3)}Pa?99774Pa

p0?p1T0/T1?{99774?400/300}Pa?133032Pa

33

物理化学上册习题解(天津大学第五版)

T2?p0V2/(nR)1?{133032?100?10?3/(2?8.3145)}K?800.05K

W1=0; W2= -pamb(V2-V0)= {-133032×(100-50)×10} J= - 6651.6 J 所以,W = W2 = - 6.652 kJ

7?H?nCp,m(T2?T1)?{2?R?(800.05?300)}J?29104J?29.10kJ

25?U?nCV,m(T2?T1)?{2?R?(800.05?300)}J?20788J?20.79kJ

2-3

Q = △U – W = (27.79 + 6.65)kJ≈ 27.44 kJ

?S??SV??Sp?nCV,mlnT0T?nCp,mln2 T1T0-1 -1

= {2?5Rln400?2?7Rln800.05} J·K= 52.30 J·K

230024003-13 4 mol 单原子理想气体从始态750 K,150 kPa,先恒容冷却使压力降至 50 kPa,再恒温可

逆压缩至 100 kPa。求整个过程的Q,W,△U,△H,△S。

解:过程为

4mol 单原子气体4mol 单原子气体4mol 单原子气体恒容冷却 T1?750K?????T0???可逆压缩????T2?T0V1,p1?150kPaV1,p0?50kPaV2,100kPaT0?T1p0/p1?{50?750/150}K?250K W1?0,

W?W2?nRT0ln(p2/p0)?{4?8.3145?250ln(100/50)}J?5763J?5.763kJ

3?U2?0,?U??U1?{4?R?(250?750)}J??24944J??24.944kJ

2 ?H2?0,?H??H1?{4?5R?(250?750)}J??41570J??41.57kJ

2Q = △U – W = (-24.944 – 5.763)kJ = - 30.707 kJ ≈ 30.71 kJ

?S??SV??ST?nCV,mlnT0p?nRln2 T1p0-1

-1

= {4?3Rln250?4?Rln100} J·K= - 77.86 J·K

2750503-14 3 mol 双原子理想气体从始态100 kPa ,75 dm,先恒温可逆压缩使体积缩小至 50 dm,再

3

恒压加热至100 dm。求整个过程的Q,W,△U,△H,△S。

解:过程为

3mol 双原子气体3mol 双原子气体3mol 双原子气体恒温可逆压缩恒压加热 V1?75dm3??????V0?50dm3?????V2?100dm3T1,p1?100kPaT1,p0??T2,p0?p2T1?p1V1/(nR)?{100?103?75?10?3/(3?8.3145)}K?300.68K

p0?nRT1/V0?{3?8.3145?300.68/(50?10?3)}K?150000Pa?150kPa

3

3

T2?p2V2/(nR)?{150?103?100?10?3/(3?8.3145)}K?601.36K W?W1?W2??nRT1ln(V0/V1)?p0(V2?V0)

?{?3?8.3145?300.68ln(50/75)?150?103?(100?50)?10?3}J

= - 4459 J = - 4.46 kJ

34

物理化学上册习题解(天津大学第五版)

5?U1?0,?U??U2?{3?R?(601.36?300.68)}J?18750J?18.75kJ

2 ?H1?0,?H??H2?{3?7R?(601.36?300.68)}J?26250J?26.25kJ

2Q = △U – W = (18.75 + 4.46 )kJ = 23.21 kJ

?S??ST,r??Sp??nRlnp0T?nCp,mln2 p1T0-1 -1

= {?3?R?ln150?3?7Rln601.36} J·K= 50.40 J·K

1002300.683-15 5 mol 单原子理想气体从始态 300 K,50kPa,先绝热可逆压缩至 100 kPa,再恒压冷却使3

体积缩小至 85 dm,求整个过程的Q,W,△U,△H,△S。

解:过程示意如下: 5mol 单原子气体5mol 单原子气体5mol 单原子气体绝热可逆压缩恒压冷却热 , T0,V1??,T1?300K,??????V0???????V2?85dm3,T2,p2p1?50kPa p0?100kPa

T0?(p0/p1)R/Cp,mT1?{(100/50)2/5?300}K?395.85K

V0?nRT0/p0?{5?8.3145?395.85/(100?103)}m3?0.16456m3

3Q1?0,W1??U1?{5?R?(395.85?300)}J?5977J?5.977kJ

2T2?p2V2100000?0.085?{}K?204.47K nR5?8.3143

-3

W2 = - pamb ( V2 – V1 ) = {- 100×10×(85 – 164.56)×10} J = 7956 J W = W1 + W2 = 13933 J = 13.933 kJ 3?U2?{5?R?(204.47?395.85)}J??11934J

2△U = △U1 + △U2 = -5957 J = - 5.957 kJ 5?H?{5?R?(204.47?300)}J??9929J??9.930kJ

2Q?Q2??U?W2?(?11.934?7.956)kJ??19.89kJ

5204.47?S??S绝热,r??SP?0?nCp,mln(T2/T0) ?{5?R?ln}J?K?1??68.66J?K?1

2395.85 3-16 始态 300 K,1Mpa 的单原子理想气体 2 mol,反抗 0.2 Mpa的恒定外压绝热不可逆膨

胀平衡态。求整个过程的W,△U,△H,△S。

解:Q = 0,W = △U

3?pamb(V2?V1)?n?R(T2?T1)2

?nET2nRT1?3??pamb???n?R(T2?T1)?p?p21??amb代入数据整理得 5T2 = 3.4 T1 = 3.4×300K;故 T2 = 204 K 3W??U2?{2?R?(204?300)}J??2395J??2.395kJ25?H?{2?R?(204?300)}J??3991J??3.991kJ

235

物理化学上册习题解(天津大学第五版)

?S?nCp,mlnT2p?nRln2T1p152040.2 ?{2?R?ln?2?Rln}J?K?123001 ?{?16.033?26.762}J?K?1?10.729J?K?1?10.73J?K?1 3-17 组成为y(B)= 0.6的单原子气体A与双原子气体B的理想化合物共 10 mol,从始态T1 =300K,p1 = 50kPa,绝热可逆压缩至p2= 200 kPa的平衡态。求过程的W,△U,△H,△S(A),△S(B)。

解:先求混合物的摩尔定压热容

75Cp,m,mix??yBCp,m(B)?0.6?R?0.4?R?3.1R

22BT2?(p2/p1)R/Cp,mT1?{(200/50)1/3.1?300}K?469.17K

?H?{10?3.1R?(469.17?300)}J?43603J?43.60kJ

CV,m,mix?Cp,m,mix?R?2.1R nA?yAn?0.4?10mol?4mol nB?6mol

?U?{10?2.1R?(469.17?300)}J?29538J?29.54kJ pB,1?ybp1?0.6?50kPa?30kPa, pA,1?20kPa pB,2?ybp2?0.6?200kPa?120kPa, pA,2?80kPa

?S(A)?nACp,m(A)lnpA,2T25483.8780?nARln?{4?R?ln?4?Rln}J?K?1 T1pA,1230020 ?{37.18?46.105}J?K?1??8.924J?K?1

因是绝热可逆过程,△S=△SA+△SB=0,故有△SB = - △SA = 8.924J·K-1 或

?S(B)?nBCp,m(B)lnpB,2T27483.87120?nBRln ?{6?R?ln?6?Rln}J?K?1 T1pB,1230030 ?8.924J?K?13-18 单原子气体A与双原子气体B的理想气体化合物共8 mol,组成为 y(B)= 0.25,始态 T1 =

400 K,V1 = 50 dm。今绝热反抗某恒定外压不可逆膨胀至末态体积V2 = 250 dm3的平衡态。。求过程的W,△U,△H,△S。

解:先求混合物的摩尔定压热容

53CV,m,mix??yBCp,m(B)?0.25?R?0.75?R?1.75R

22BQ = 0,W = △U

?pamb(V2?V1)?nCV,m,mix(T2?T1)3

nET2?V2?V1??n?1.75R(T2?T1)?V2将数据代入,得 2.55 T2 = 1.75 T1= 1.75×400K,故 T2 = 274.51 K W??U?{8?1.75R?(274.51?400)}J??14610J??14.61kJ Cp,m,mix?CV,m,mix?R?1.75R?R?2.75R

?H?{8?2.75R?(274.51?400)}J??22954J??22.95kJ

36