概率论和数理统计 - 复旦大学 - 课后题答案韩旭里 - 写永钦 下载本文

若走第二条路,X~N(50,4),则

?X?5060?50?P(X?60)?P?????(2.5)?0.9938++

44??2

故走第二条路乘上火车的把握大些. (2) 若X~N(40,10),则

?X?4045?40?P(X?45)?P?????(0.5)?0.6915

1010??2

若X~N(50,42),则

?X?5045?50?P(X?45)?P?????(?1.25)

44?? ?1??(1.25?)故走第一条路乘上火车的把握大些.

00.121.设X~N(3,2),

(1) 求P{2

?1??1???(1)???????(1)?1???? ?2??2?

?0.8413?1?0.6915?0.5328X?310?3???4?3P(?4?X?10)?P????

222?? ????7??7????????0.9996 ?2??2?P(|X|?2)?P(X?2)?P(X??2)

2?32?3?X?3??X?3???P???P????2?22??2??1??5??1??5? ?1???????????????1????

?2??2??2??2??0.6915?1?0.9938?0.6977P(X?3)?P(X?32?3-32)?1??(0)?0.5

(2) c=3

22.由某机器生产的螺栓长度(cm)X~N(10.05,0.062),规定长度在10.05±0.12内为合格品,

25

求一螺栓为不合格品的概率. 【解】P(|X?10.05|?0.12)?P???X?10.050.06?0.12?? 0.06?

?1??(2)???0.0456(?2)?2[??1

2

(23.一工厂生产的电子管寿命X(小时)服从正态分布N(160,σ),若要求P{120<X≤200}

≥0.8,允许σ最大不超过多少? 【解】P(120?X?200)?P160??120?160?X?160?200??????? ? ???40??40????????2??40??1?0. 8????????????故 ??401.29?31.25

24.设随机变量X分布函数为

=??A?Be?xtF(x),x?0,0),

?0,x?0.(??(1) 求常数A,B;

(2) 求P{X≤2},P{X>3}; (3) 求分布密度f(x).

?【解】(1)由??xlim???F(x)?1?A?1??xlim?0?F(x)?得?B??1

xlim?0?F(x)?(2) P(X?2)?F(2)?1?e?2?

P(X?3)?1?F(3)?1?(1?e?3?)?e?3?

)?F?(x)????e??x(3) f(x,x?0?0,x?0

25.设随机变量X的概率密度为

?x,0?x?1,f(x)=??2?x,1?x?2, ??0,其他.求X的分布函数F(x),并画出f(x)及F(x).

【解】当x<0时F(x)=0

当0≤x<1时F(x)??x??f(t)dt??0??f(t)dt??x0f(t)dt

26

??x0tdt?x22x??0??1

当1≤x<2时F(x)?????f(t)dt f(t)dt??10f(t)dt??x1f(t)dttdt?x(2?t)dt?0?1

1x2

?2?2x?2?32??x22?2x?1当x≥2时F(x)??x

??f(t)dt?1?0,x?0?2?x,0?x?1故 F(x)???2

?2??x?2x?1,1?x?2?2?1,x?226.设随机变量X的密度函数为

(1) f(x)=ae??|x|,λ>0;

?bx,0?x?1,(2) f(x)=??12,1?x?2, ?x?0,其他.试确定常数a,b,并求其分布函数F(x).

【解】(1) 由??f(x)dx????1知1???|x|??ae?dx?2a????x0edx?2a?

故 a??2

??e??x,x?0即密度函数为 f(x)????2

????2e?xx?0当x≤0时F(x)??x??f(x)dx??x??x??2edx?12e?x

当x>0时F(x)??xf(x)dx??0??xx????2edx???02e??xdx

?1?1?x2e?

27

故其分布函数

1??x?1?e,??2F(x)???1e?x,??2x?0 x?0(2) 由1???)dx??111??f(x0bxdx??21x2dx?b2?2

得 b=1 即X的密度函数为

?x,0?x?1?f(x)???11?x?2 ?x2,??0,其他当x≤0时F(x)=0 当0

??xx20xdx?2

当1≤x<2时F(x)??xf(x)dx??00dx??1xdx??x1????01x2dx ?312?x

当x≥2时F(x)=1

故其分布函数为

?0,x?0?x2?0?x?1F(x)???2,

?3??1,1?x?2?2x?1,x?227.求标准正态分布的上?分位点, (1)?=0.01,求z?; (2)?=0.003,求z?,z?/2. 【解】(1) P(X?z?)?0.01

即 1??(z?)?0.0 1即 ?(z?)?0.0 9

28