×Ô¿ØÔ­Àí+´ð°¸ ÏÂÔØ±¾ÎÄ

±¦¼¦ÎÄÀíѧԺÊÔÌâ

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð Ò» ÊÊ Óà ר Òµ ×Ô¶¯»¯

Ò»¡¢Ìî¿Õ(ÿ¿Õ2·Ö£¬¹²20·Ö)

The word control is usually taken to mean (1).Control theory itself has two categories£¬they are (2).By definition£¬the (3) of a component or system is the ratio of the transformed output to the transformed input .In time domain£¬the three basic performance criteria for a control system are (4) and (5).The (6) criterion is a method for determining continuous system stability. The (7) technique is a graphical method of determining the location of the roots of the characteristic equation as any single parameter£¬such as (8)£¬is varied from zero to infinity. In Bode plot , the magnitude M in dB£¬is plotted against frequency on (9) paper. The software tool of the control system you have known is (10).

¶þ¡¢(10·Ö)ÒÑ֪ijϵͳ½á¹¹Í¼ÈçÏ£¬ÇóÆä±Õ»·´«µÝº¯ÊýC£¨S£©/R£¨S£©¡£

Èý¡¢(15·Ö)ÒÑÖªµ¥Î»·´À¡ÏµÍ³£¬¿ª»·´«º¯ÎªG£¨S£©=K/[S£¨TS+1£©]£¬ÒªÇóµ¥Î»½×Ô¾º¯Êý×÷ÓÃʱ£¬³¬µ÷Á¿Îª16%£¬µ÷½Úʱ¼äΪ7£¬ÇóK£¬T¡£

ËÄ¡¢(15·Ö)ÒÑÖªµ¥Î»·´À¡ÏµÍ³£¬¿ª»·´«º¯ÎªG£¨S£©=k(S+1)/[S(S+1/2)2]£¬ÊÔ»æÖÆk´ÓÁãÇ÷½üÓÚÎÞÇî´óʱµÄ¸ù¹ì¼£¡£

Îå¡¢(20·Ö)ÒÑÖª×îСÏàλϵͳ¿ª»·ÆµÂÊÌØÐԵIJ®µÂͼ£¬ÒªÇóÂú×ãͼÖеĴ©Ô½ÆµÂÊwcÇÒ²»¸Ä±äԭϵͳµÄÎÈ̬¾«¶È¡££¨1£©ÅжϲÉÓúÎÖÖÐÎʽµÄ´®ÁªÐ£Õý¡££¨2£©»­³öУÕýºóµÄ¶ÔÊý½¥½ü·ùÆµÌØÐÔÇúÏß¡££¨3£©»­³öУÕý»·½ÚµÄ¶ÔÊý½¥½ø·ùÆµÌØÐÔÇúÏß¡££¨4£© С½áÓÃÆµÂÊ·¨½øÐг¬Ç°Ð£ÕýµÄÖ÷Òª²½Öè¡£

Áù¡¢(10·Ö)ÒÑÖªÏßÐÔÔª¼þµÄƵÂÊÌØÐÔ¼°·ÇÏßÐÔÔª¼þÃèÊöº¯ÊýÓйصÄÇúÏߣ¬Á½Õß´®ÁªÆðÀ´¹¹³ÉÒ»µ¥Î»·´À¡ÏµÍ³Í¼Ê¾£¬ÅжÏϵͳÊÇ·ñ´æÔÚ×ÔÕñ¡£

Æß¡¢ (10·Ö)ijÀëɢϵͳµÄ±Õ»·Âö³å´«µÝº¯ÊýΪG£¨z£©=(3.68z+2.64)/(z2+2.31z+3),ÅжϸÃϵͳµÄÎȶ¨ÐÔ¡£

112

±¦¼¦ÎÄÀíѧԺÊÔÌâ

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð Ò» ÊÊ Óà ר Òµ ×Ô¶¯»¯

113

±¦¼¦ÎÄÀíѧԺÊÔÌâ

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð ¶þ ÊÊ Óà ר Òµ ×Ô¶¯»¯

1. £¨±¾Ìâ¹²15·Ö£¬µÚ1Ìâ8·Ö£¬µÚ2Ìâ7·Ö£©

(1) Given a system as following diag., input--- X(s)£¬output---Y(s).how many forward paths and how many feedback loops are there in the block diagram¡£

+1/sK 1S?1 + ++ X(s)Y(s) -+ + +1/sK2S?1

(2) solve the transfer function C(z)/R(z) in following diag. system. r(t)c(t)G(s)H2(s)H1(s)2£®£¨±¾Ìâ¹²15·Ö£©Given a system as diag.(a),its unit step response is shown in diag. (b)£¬solve

K1 ¡¢3£®£¨±¾Ìâ¹²15·Ö£©Given a unit feedback system , its open-loop transfer function is

K2 and a¡£

114

±¦¼¦ÎÄÀíѧԺÊÔÌâ

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð ¶þ ÊÊ Óà ר Òµ ×Ô¶¯»¯

prove : its part root locus is a circle when k is 0 to infinity. 4. £¨±¾Ìâ¹²15·Ö£¬µÚ1Ìâ8·Ö£¬µÚ2Ìâ7·Ö£©

(1) some system, its open loop transfer function isG(s)H(s)?stability using frequency domain method.

(2) when system open loop transfer function is G(s)H(s)?K(T1s?1)(T2s?1),K,T1,T2>0,illustrate closed loop

10(5s?1)(10s?1),check closed loop system

system stability using Nyquist criterion. £¨15%£© 5. £¨±¾Ìâ¹²20·Ö£¬µÚ1¡¢2Ìâ¸÷6·Ö£¬µÚ3Ìâ8·Ö£©three minimum phase system¢ñ¡¢¢ò¡¢¢ó,their open-loop bode diag. is as following

(1) compare their ts,§Ò% when the input is a unit step; (2) compare their ess when the input is a unit ramp£»

(3) compare phase margin and amplitude margin of system¢ñ¡¢¢ò¡£ 6. £¨±¾Ìâ¹²15·Ö£©A non-linear control system with saturation is shown as following dia. the description function

of saturation non-linearity is N£¨A£©?system stable, solve K1.

7£®£¨±¾Ìâ¹²5·Ö£¬µÚGiven a system, its closed-loop transfer function is Gb(s)?s?2s?3s?4442322k?[arcsinaA?aA1?(aA)]2(A?a) .in order to make the

5s?6s?7s?8s?9some MATLAB command to solve its unit step response and unit impulse response.

, write

115

±¦¼¦ÎÄÀíѧԺÊÔÌâ

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð Èý ÊÊ Óà ר Òµ ×Ô¶¯»¯

1 £¨±¾Ìâ¹²30·Ö£¬Ã¿Ìâ3·Ö£©select the appropriate answer to the following questions: 1.1 a unit feedback system, its open transfer function is G(s)?steady-state error is£¨£©.

£¨1£©0 £¨2£©¡Þ £¨3£©0.01 £¨4£©100 1.2 a series correction transfer function is Gc(s)?s?10.1s?110000(s?1)(5s?1)s(s?4s?100)22£¬when the input is

t22,its

,it is a kind of ( )

£¨1£©lag correction £¨2£©lead correction £¨3£©lag£­lead correction (4) proportion correction 1.3 if we express 0.001 in dB, its value is ( ) dB.

£¨1£©3 £¨2£©£­3 £¨3£©£­60 £¨4£©60

100(0.1s?1)(0.01s?1)1.4 a system¡¯s transfer function is G(s)?,its poles are(is)£¨ £©

(s?1)(0.001s?1)£¨1£©10£¬100 £¨2£©£­1£¬£­1000 (3) 1£¬ 1000 £¨4£©£­10£¬ £­100 1.5 a system¡¯s transfer function is G(s)?110s?1,the value of its unit pulse response is ( ) when t=0.

£¨1£©0 £¨2£©¡Þ £¨3£©0.1 £¨4£©1

1.6 a second-order system¡¯s damped ratio is 2£¬its step response is£¨ £© (1) oscillation divergent £¨2£©monotonous attenuating

£¨3£©oscillation attenuating £¨4£©constant amplitude oscillation 1.7 the larger the cut-off frequency,£¨ £©

(1) the better the anti-disturbance capacity to high frequency signal. (2) the shorter its transient response time. (3) The worse its response speed. (4) the smaller its steady-state error.

1.8 in order to improve second-order system stability, we can£¨£©

£¨1£©increase ?n £¨2£©decrease ?n£¨3£©increase ? £¨4£©decrease ?

1.9 the stability depends on a system¡¯s£¨£© £¨1£©disturbance.

£¨2£©the acting point of the disturbance. £¨3£©poles¡¯ position. £¨4£©input.

1.10 according to the given phase margin, we know system ( ) has the best stability.

£¨1£©?1?70? £¨2£©?2??50?£¨3£©?3?0? £¨4£©?4?30?

2 £¨±¾Ìâ¹²10·Ö£¬Ã¿Ìâ¸÷5·Ö£©(1) Given a system as following figure 1, Solve its closed-loop transfer function¡£

figure1 figure 2 c(t)r(t) G(s) H2(s)H1(s)

116

±¦¼¦ÎÄÀíѧԺÊÔÌâ

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð Èý ÊÊ Óà ר Òµ ×Ô¶¯»¯

(2) solve the transfer function C(z)/R(z) in figure 2. 3 .£¨±¾Ìâ¹²15·Ö£©Given a system as figure 3 (a),its unit step response is shown in figure 3 (b)£¬solve K1 ¡¢ K2

and a.

figure 3

4£®£¨±¾Ìâ¹²15·Ö£©Given a unit feedback system , its open-loop transfer function is G£¨S£©=k/[S(S+1)(s+2)] draw its root locus when k is 0 to infinity.¡£ 5£® £¨±¾Ìâ¹²15·Ö£©given a minimum phase system, its Bode diag. s figure 4. solve (1) open loop K.£¨2£©wc.£¨3£©open loop TF.£¨4£©phase margin.£¨5£©amplitude margin .£¨6£©check closed loop stability. Figure 5 Figure 4 6£®£¨±¾Ìâ¹²15·Ö£©a non-linear control system with saturation is shown as figure 5. the description function of saturation non-linearity is N£¨A£©?stable, solve K1

117

2k?[arcsinaA?aA1?(aA)]2(A?a) .in order to make the system

±¦¼¦ÎÄÀíѧԺÊÔÌâ

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð ËÄ ÊÊ Óà ר Òµ ×Ô¶¯»¯

1¡¢ Ìî¿Õ(ÿ¿Õ2·Ö£¬¹²20·Ö)Ìî¿Õ£ºÔÚ×Ô¶¯¿ØÖÆÏµÍ³ÖУ¬³ý¿ª»·¿ØÖÆÍ⣬×î³£ÓõĿØÖÆ·½Ê½Îª (1)¡£¿ØÖÆÀí

ÂÛ³ý·ÖÎöÏßÐÔϵͳÍ⣬»¹ÌÖÂÛ (2)¡£ÎÒÃǰÑÒ»¸öϵͳÊä³öµÄLAPLACE±ä»»ÓëÊäÈëLAPLACE±ä»»µÄ±ÈÖµ¶¨ÒåΪ (3) ¡£¹¤³Ì¿ØÖÆÎÊÌâµÄ»ù±¾ÒªÇó¿ÉÒÔ¹éÄÉΪÈý¸ö·½Ã棺 (4)¡¢(5) ºÍ (6)¡£ (7) ÊÇÒ»ÖÖÅжÏÁ¬ÐøÏµÍ³Îȶ¨ÐԵķ½·¨¡£ (8) ÊÇÖ¸Ò»¸ö²ÎÊý£¬ÀýÈ磨9£©£¬´Ó0±äµ½ÎÞÇî´óʱ£¬È·¶¨±Õ»·ÌØÕ÷·½³ÌµÄ¸ùÔÚSÆ½ÃæÎ»Öõķ½·¨¡£µ±Ò»¸öϵͳµÄ¿ª»·´«µÝº¯ÊýΪ¢òÐÍʱ£¬ÈôÊäÈëΪбÆÂÐźţ¬ÔòÎÈ̬Îó²îΪ£¨10£©¡£ 2¡¢ (10·Ö)ÒÑ֪ijϵͳ½á¹¹Í¼ÈçÏ£¬ÇóÆä±Õ»·´«µÝº¯ÊýC£¨S£©/R£¨S£©¡£

3¡¢ (15·Ö)Éè¶þ½×¿ØÖÆÏµÍ³µÄµ¥Î»½×Ô¾ÏìÓ¦ÇúÏßÈçͼËùʾ£¬Èô¸ÃϵͳΪµ¥Î»·´À¡¿ØÖÆÏµÍ³£¬ÊÔÈ·¶¨Æäµ¥Î»´«

µÝº¯Êý¡£

4¡¢ (15·Ö)ÒÑÖªµ¥Î»·´À¡ÏµÍ³£¬¿ª»·´«º¯ÎªG£¨S£©=k(S+1)/[S(S+1/2)2]£¬ÊÔ»æÖÆk´ÓÁãÇ÷½üÓÚÎÞÇî´óʱµÄ¸ù

¹ì¼£¡£

118

±¦¼¦ÎÄÀíѧԺÊÔÌâ

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð ËÄ ÊÊ Óà ר Òµ ×Ô¶¯»¯

5¡¢ (20·Ö)ÒÑÖª×îСÏàλϵͳ¿ª»·ÆµÂÊÌØÐԵIJ®µÂͼ£¬£¨1£©Ð´³ö¿ª»·´«µÝº¯Êý¡££¨2£©ÈôÓô®ÁªÐ£Õý£¬Ð£Õý»·

½ÚµÄ´«µÝº¯ÊýΪÓÒͼËùʾ£¬ÇóУÕýºóϵͳµÄ¿ª»·´«µÝº¯Êý¡£

6¡¢ (15·Ö)ϵͳÈçͼËùʾ£º£¨1£©ÇóʹϵͳÎȶ¨µÄKÖµµÄ·¶Î§¡££¨2£©µ±ÊäÈëΪµ¥Î»½×Ô¾ÐźÅʱ£¬ÇóÎÈ̬Îó²î¡£

7¡¢ (5·Ö)³£¼ûµÄ·ÇÏßÐÔÓÐÄÄЩ£¿Ñо¿·ÇÏßÐÔϵͳµÄ»ù±¾·½·¨ÓÐÄÄЩ£¿

119

±¦¼¦ÎÄÀíѧԺÊÔÌâ

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð Îå ÊÊ Óà ר Òµ ×Ô¶¯»¯

Ò»¡¢¶àÏîÑ¡ÔñÌ⣨ÿСÌâ5·Ö£¬5¡Á5£½25·Ö£©

1¡¢ÏÂÁи÷ʽÊÇÃèÊöϵͳµÄ΢·Ö·½³Ì£¬ÆäÖÐc(t)ΪÊä³öÁ¿£¬r(t)ΪÊäÈëÁ¿£¬£¨ £©¶ÔÓ¦µÄϵͳÊÇ·ÇÏßÐÔϵͳ¡£ A£®c(t)?B£®tdc(t)5?r(t)?t2dr(t)dt22

dtC£®c(t)?r(t)cos?t?5

?c(t)?r(t)?3dr(t)dtD£®c(t)?r(t)

2E£®c(t)?3r(t)?63dr(t)dt?5?r(?)d???t

2¡¢ÒÑ֪ϵͳµÄ±Õ»·ÌØÕ÷·½³ÌÈçÏ£¬ÅжϿÉÖª·½³Ì£¨ £©¶ÔÓ¦µÄ±Õ»·ÏµÍ³ÊÇÎȶ¨µÄ¡£ A£®s?3s?2?0 B£®s?3s?2?0

C£®s?s?3s?s?2?0 D£®s?2s?3s?4s?5?0

E£®s?8s?18s?16s?5?0

3¡¢ÏÂÁйØÓÚÎïÀí¿ÉʵÏÖϵͳ£¨n¡Ým£©µÄ180¡ã¸ù¹ì¼£µÄÃèÊö£¬£¨ £©ÊÇÕýÈ·µÄÃèÊö¡£ A£®¸ù¹ì¼£ÆðÓÚ¿ª»·¼«µã£¬ÖÕÓÚ¿ª»·Áãµã¡£ B£®¸ù¹ì¼£¹ØÓÚÐéÖá¶Ô³Æ¡£

C£®ÊµÖáÉÏÄ³Ò»ÇøÓò£¬ÈôÆä×ó²à¿ª»·Á㼫µã¸öÊýÖ®ºÍÎªÆæÊý£¬Ôò¸ÃÇøÓò±ØÊǸù¹ì¼£¡£ D£®±Õ»·¼«µãÖ®ºÍ´óÓÚ¿ª»·¼«µãÖ®ºÍ¡£

E£®¸´Æ½ÃæÉϵÄlÌõ¸ù¹ì¼£·ÖÖ§ÏàÓö£¬Æä·ÖÀë½ÇµÈÓÚ(2k?1)?l¡£

24324324324¡¢ÒÑ֪ϵͳµÄ¿ª»··ùÏàÇúÏßÈçÏÂͼËùʾ£¬¿ÉÖª£¨ £©¶ÔÓ¦µÄϵͳÊDZջ·Îȶ¨µÄ¡£ÆäÖÐ?Ϊ¿ª»·ÏµÍ³µÄÐͱð£¬PΪ¿ª»·´«µÝº¯ÊýÔÚÓÒ°ësÆ½ÃæµÄ¼«µã¸öÊý¡£

5¡¢µ±¶þ½×ϵͳµÄ²ÎÁ¿±ä»¯Ê±£¬ÏÂÁÐ¶ÔÆäÐÔÄܱ仯µÄ¶¨ÐÔ·ÖÎö£¬£¨ £©ÊÇÕýÈ·µÄ¡£ A£®×èÄá±ÈԽС£¬ÏµÍ³ÏìӦԽƽÎÈ¡£ B£®Ïà½ÇÔ£¶È?Ô½´ó£¬ÏµÍ³ÏìӦԽƽÎÈ¡£

C£®±Õ»·Ð³Õñ·åÖµMrÔ½´ó£¬ÏµÍ³ÏìӦԽƽÎÈ¡£

D£®ÏµÍ³µÄÎȶ¨³Ì¶ÈÏ൱ʱ£¬¿ª»·½ØÖÁƵÂÊ?cÔ½¸ß£¬ÏµÍ³ÏìÓ¦Ô½»ºÂý¡£ E£®±Õ»·Ð³Õñ·åÖµÏàͬʱ£¬±Õ»·´ø¿íÔ½¿í£¬ÏµÍ³ÏìÓ¦Ô½»ºÂý¡£

¶þ¡¢ÒÑÖªRCÎÞÔ´ÍøÂçÈçͼËùʾ£¬ÊÔÓø´×迹·¨»­³öϵͳ½á¹¹Í¼£¬²¢Çó³öÆä´«µÝº¯Êý

120

U0(s)Ui(s)

¡££¨¹²15·Ö£©

±¦¼¦ÎÄÀíѧԺÊÔÌâ

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð Îå ÊÊ Óà ר Òµ ×Ô¶¯»¯

Èý¡¢·ÖÎö×÷ͼ£¨¹²15·Ö£©

Ks(s?4)(s?4s?20)2ÒÑÖª¸º·´À¡ÏµÍ³µÄ¿ª»·´«µÝº¯ÊýÈçÏ£ºG(s)H(s)?

ÊÔ»æÖƱջ·ÏµÍ³µÄ¸ÅÂÔ¸ù¹ì¼££¬ÒªÇóÈ·¶¨·ÖÀëµã¡£ ËÄ¡¢·ÖÎö¼ÆË㣨ÿСÌâ15·Ö£¬15¡Á3£½45·Ö£©

1¡¢Ä³¿ØÖÆÏµÍ³µÄ½á¹¹Í¼ÈçͼËùʾ£¬ÏµÍ³µÄ¸ø¶¨ÊäÈëÐźÅÊÇбÆÂº¯Êýr(t)?Rt£¬ÈŶ¯×÷ÓÃÊǽ×Ô¾º¯Êýn(t)?N?1(t)¡£T1,T2>0£¬»·½ÚÔöÒæK1,K2Ϊ¿Éµ÷²ÎÊý£¬ÒªÇó£º ¢Å¡¢È·¶¨ÏµÍ³±Õ»·Îȶ¨Ê±£¬²ÎÊýK1¡¢K2Ó¦Âú×ãµÄÔ¼ÊøÌõ¼þ£» ¢Æ¡¢¼ÆËãϵͳÔÚ¸ø¶¨ÐźźÍÈŶ¯×÷ÓÃϵÄÎÈ̬Îó²î£»

¢Ç¡¢Îª¼õСϵͳµÄÎÈ̬Îó²î£¬Ó¦ÈçºÎµ÷ÕûK1ºÍK2¡£

2¡¢ÒÑ֪ϵͳµÄ¿ª»·´«µÝº¯Êý£ºG(s)?Ks(Ts?1)(s?1)(K,T?0)¡£ÊÔ¸ù¾ÝÄοüË¹ÌØÎȶ¨Åоݣ¬È·¶¨±Õ»·ÏµÍ³µÄ

Îȶ¨Ìõ¼þ£º

¢Å¡¢T=2ʱ£¬KÖµµÄ·¶Î§£» ¢Æ¡¢K=10ʱ£¬TÖµµÄ·¶Î§£» ¢Ç¡¢K¡¢TÖµ¼äµÄÔ¼ÊøÌõ¼þ¡£

3¡¢Ä³×îСÏàλϵͳµÄ¿ª»·¶ÔÊý·ùÆµÌØÐÔÇúÏßÈçͼËùʾ£¬ÆäÖÐÐéÏß±íʾУÕýǰµÄ£¬ÊµÏß±íʾУÕýºóµÄ£¬Çó½â£º ¢Å¡¢È·¶¨²ÉÓõÄÊǺÎÖÖ´®ÁªÐ£Õý£¬²¢Ð´³öУÕý×°ÖõĴ«µÝº¯ÊýGc(s)£» ¢Æ¡¢È·¶¨Ð£ÕýºóϵͳÎȶ¨Ê±µÄ¿ª»·ÔöÒæ£»

¢Ç¡¢µ±¿ª»·ÔöÒæK=1ʱ£¬ÇóУÕýºóϵͳµÄÏàλԣ¶È¡£

121

±¦¼¦ÎÄÀíѧԺÊÔÌâ

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð Áù ÊÊ Óà ר Òµ ×Ô¶¯»¯

Ò»¡¢ÅжÏÌ⣨ÿСÌâ2·Ö£¬2¡Á5£½10·Ö£© 1¡¢ÏßÐÔϵͳ±Ø¶¨Âú×ãµþ¼Ó¶¨Àí¡£

2¡¢´«µÝº¯ÊýÊÇϵͳÊä³öÁ¿ÓëÊäÈëÁ¿µÄÀ­Êϱ任֮±È¡£ 3¡¢¿ØÖÆÏµÍ³µÄ×èÄá±ÈԽС£¬ÏµÍ³ÏìӦԽƽÎÈ¡£

4¡¢ÊµÖáÉϵÄÄ³Ò»ÇøÓò£¬ÈôÆä×ó±ß¿ª»·Á㼫µãΪ»ùÊý£¬Ôò¸ÃÇøÓò±ØÊǸù¹ì¼£¡£ 5¡¢·ÇÏßÐÔϵͳµÄÎȶ¨ÐÔ½öÈ¡¾öÓÚϵͳ×ÔÉíµÄ½á¹¹¡£

¶þ¡¢Çó½âÏÂͼËùʾϵͳµÄ´«µÝº¯Êý£¨Ã¿Ð¡Ìâ5·Ö£¬5¡Á2£½10·Ö£© 1¡¢ÏµÍ³½á¹¹Í¼ÈçͼËùʾ£¬ÊÔÓýṹͼ»¯¼ò·¨Ç󴫵ݺ¯ÊýC(s)R(s)¡£

2¡¢ÏµÍ³Á÷³ÌͼÈçͼËùʾ£¬ÊÔÓÃ÷ɭ¹«Ê½Ç󴫵ݺ¯ÊýC(s)R(s)¡£

Èý¡¢·ÖÎö×÷ͼ£¨µÚÒ»Ìâ15·Ö£¬µÚ¶þÌâ5·Ö£¬15+5£½20·Ö£© 1¡¢ÒÑÖª¿ØÖÆÏµÍ³µÄÌØÕ÷·½³ÌʽÈçÏ£ºs?3s?(K?2)s?10K32?0£¬ÊÔ»æÖƸÃϵͳµÄ¸ù¹ì¼£Í¼£¨0?K??£©¡£

2¡¢»­³öÁ½ÖÖ³£¼ûµÄ·ÇÏßÐÔÌØÐÔ¡£

ËÄ¡¢·ÖÎö¼ÆË㣨ÿСÌâ15·Ö£¬15¡Á4£½60·Ö£©

1¡¢Éèµç×ÓÐÄÂÊÆð²«Æ÷ϵͳÈçͼËùʾ£¬ÆäÖÐÄ£·ÂÐÄÔàµÄ´«µÝº¯ÊýÏ൱ÓÚÒ»´¿»ý·ÖÆ÷¡£ ÒªÇ󣺢š¢Èô??0.5¶ÔÓ¦×î¼ÑÏìÓ¦£¬ÎÊÆð²«Æ÷ÔöÒæKÓ¦¸ÃÊǶà´ó£¿

¢Æ¡¢ÈôÆÚÍûÐÄËÙΪ60´Î/min£¬²¢Í»È»½ÓͨÆð²«Æ÷£¬ÎÊ1sºóʵ¼ÊÐÄËÙΪ¶àÉÙ£¿Ë²Ê±×î´óÐÄËÙΪ¶àÉÙ£¿

2¡¢ÒÑÖªµ¥Î»·´À¡ÏµÍ³µÄ¿ª»·´«µÝº¯ÊýΪ£º

G(s)?K(1?0.2s)s(1?0.05s)22

ÒªÇ󣺢š¢ÀûÓñջ·¸ù¹ì¼£Çó±£Ö¤ÏµÍ³Îȶ¨ËùÔÊÐíµÄKÖµ±ä»¯·¶Î§£»

¢Æ¡¢ÀûÓÿª»··ùÏàÇúÏßÇó±£Ö¤ÏµÍ³Îȶ¨ËùÔÊÐíµÄKÖµ±ä»¯·¶Î§¡£

3¡¢Ä³ÏµÍ³Î´¾­Ð£ÕýʱµÄ¿ª»·´«µÝº¯ÊýΪ£º

G0(s)?40s(1?0.25s)(1?0.0625s)40(1?s)s(1?10s)(1?0.0625s)(1?0.025s)

ÏÖ²ÉÓô®ÁªÐ£ÕýÍøÂçÀ´¸ÄÉÆÏµÍ³µÄÐÔÄÜ£¬ÈôÒªÇóУÕýºóµÄ¿ª»·´«º¯Îª£º

G'(s)?

ÒªÇ󣺢š¢È·¶¨´®ÁªÐ£ÕýÍøÂçµÄÀàÐÍ£»

¢Æ¡¢¶ÔУÕýǰºóϵͳµÄÐÔÄÜ×÷³ö±È½Ï¡£ 4¡¢Çó½â²î·Ö·½³Ì f?k?2??3f?k?1??2f?k????t?

122

±¦¼¦ÎÄÀíѧԺÊÔÌâ

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð Áù ÊÊ Óà ר Òµ ×Ô¶¯»¯

ÆäÖУº³õʼÌõ¼þΪf(0)?0,f(1)?0£»ÊäÈëÌõ¼þΪ??t??

??t?0??0t?0

123

±¦¼¦ÎÄÀíѧԺÊÔÌâ

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð Æß ÊÊ Óà ר Òµ ×Ô¶¯»¯

Ò»¡¢Ìî¿ÕÌ⣨ÿ¿Õ1·Ö£¬1¡Á17£½17·Ö£©

1£®×Ô¶¯¿ØÖÆÏµÍ³°´ÕÕϵͳÊä³öÁ¿¶ÔϵͳµÄ¿ØÖÆ×÷ÓÃÊÇ·ñ·¢ÉúÓ°Ï죬¿É·ÖΪÁ½ÖÖ»ù±¾µÄ¿ØÖÆ·½Ê½£º

ºÍ ¡£

2£®¶Ô×Ô¶¯¿ØÖÆÏµÍ³µÄ»ù±¾ÐÔÄÜÒªÇó·ÖΪÈýÖÖ£º ¡¢ ºÍ ¡£Îȶ¨ÐÔ ¿ìËÙÐÔ ×¼È·ÐÔ 3£®ÏßÐÔ¶¨³£ÏµÍ³µÄ´«µÝº¯Êý£¬¶¨ÒåΪ£º ¡£ 4£®Ç·×èÄá¶þ½×ϵͳÖУ¬×èÄá±ÈµÄȡֵ·¶Î§Îª£º ¡£

5£®ÈôÓÉϵͳµÄ±Õ»·ÌØÕ÷·½³ÌÀ´Åжϱջ·ÏµÍ³µÄÎȶ¨ÐÔ£¬ÔòÏßÐÔϵͳÎȶ¨µÄ³äÒªÌõ¼þÊÇ£º±Õ»·ÌØÕ÷·½³ÌµÄËù

Óиù¾ù ¡£

6£®µäÐÍÊäÈëÐźÅÏÂϵͳµÄÎÈ̬Îó²îÖ÷ÒªÊÜ ¡¢ ºÍ µÄÓ°Ïì¡£ 7£®¸ù¹ì¼£ÊÇ ¡£

8£®¿ª»·¶ÔÊý·ùÆµÌØÐÔÇúÏßÖУ¬µÍƵ¶ÎÖ±ÏßµÄбÂÊÈ¡¾öÓÚϵͳÖаüº¬µÄ ¡£ 9£®³£ÓõĴ®ÁªÐ£Õý·½·¨ÓÐ ¡¢ ºÍ ¡£

10£®·ÇÏßÐÔ»·½ÚµÄÃèÊöº¯Êý¶¨ÒåΪ ¡£ ¶þ¡¢µ¥ÏîÑ¡ÔñÌ⣨ÿСÌâ2·Ö£¬2¡Á5£½10·Ö£©

1£®ÏÂÁи÷ÏîÊÇÃèÊöϵͳµÄ΢·Ö·½³Ì£¬ÆäÖÐc(t)ΪÊä³öÁ¿£¬r(t)ΪÊäÈëÁ¿£¬£¨ £©ÃèÊöµÄϵͳÊÇ·ÇÏßÐÔϵͳ¡£ A£®B£®

dc(t)33dtdtdtc(t)?r(t)cos?t?5

?3dc(t)22?6dc(t)?8c(t)?r(t)

C£®c(t)?3r(t)?6D£®

dc(t)dt22dr(t)dt?5?r(?)d???t

(nÊdz£Êý)?1dc(t)tdt?(1?nt22)c(t)?r(t)

2£®ÏÂÃæ¹ØÓÚÇ·×èÄá¶þ½×ϵͳ½×Ô¾ÏìÓ¦ÐÔÄÜÓë²ÎÊý¼ä¹ØÏµµÄ·ÖÎö£¬ÕýÈ·µÄÊÇ£¨ £©¡£ A£®ÏµÍ³µÄ×èÄá±ÈԽС£¬½×Ô¾ÏìÓ¦µÄµ÷½Úʱ¼äÔ½³¤¡£ B£®ÏµÍ³µÄ×èÄá±ÈÔ½´ó£¬½×Ô¾ÏìÓ¦µÄ³¬µ÷Á¿Ô½´ó¡£ C£®ÏµÍ³µÄ×ÔȻƵÂÊÔ½´ó£¬½×Ô¾ÏìÓ¦µÄ³¬µ÷Á¿Ô½´ó¡£ D£®ÏµÍ³µÄ×ÔȻƵÂÊԽС£¬½×Ô¾ÏìÓ¦µÄµ÷½Úʱ¼äÔ½¶Ì¡£

3£®ÏÂÁйØÓÚÎïÀí¿ÉʵÏÖϵͳ£¨n¡Ým£©µÄ180¡ã¸ù¹ì¼£µÄÃèÊö£¬£¨ £©ÊÇÕýÈ·µÄÃèÊö¡£ A£®¸ù¹ì¼£ÆðÓÚ¿ª»·Áãµã£¬ÖÕÓÚ¿ª»·¼«µã¡£

B£®ÊµÖáÉÏÄ³Ò»ÇøÓò£¬ÈôÆä×ó²à¿ª»·Á㼫µã¸öÊýÖ®ºÍÎªÆæÊý£¬Ôò¸ÃÇøÓò±ØÊǸù¹ì¼£¡£ C£®±Õ»·¼«µãÖ®ºÍ´óÓÚ¿ª»·¼«µãÖ®ºÍ¡£

D£®¸´Æ½ÃæÉϵÄlÌõ¸ù¹ì¼£·ÖÖ§ÏàÓö£¬Æä·ÖÀë½ÇµÈÓÚ(2k?1)?l¡£

4£®ÏÂÁÐÊǸı俪»·ÏµÍ³µÄÁ㼫µãÔÚ¸´Æ½ÃæÉϵÄλÖÃʱ¶Ô±Õ»·ÏµÍ³¸ù¹ì¼£±ä»¯Ç÷ÊÆµÄ·ÖÎö£¬ÕýÈ·µÄÊÇ£¨ £©¡£ A£®¿ª»·ÁãµãÓÒÒÆÊ±£¬ÏµÍ³µÄ±Õ»·¸ù¹ì¼£ÏòÓÒÍäÇú¡£ B£®¿ª»·Áãµã×óÒÆÊ±£¬ÏµÍ³µÄ±Õ»·¸ù¹ì¼£ÏòÓÒÍäÇú¡£ C£®¿ª»·¼«µãÓÒÒÆÊ±£¬ÏµÍ³µÄ±Õ»·¸ù¹ì¼£Ïò×óÍäÇú¡£ D£®¿ª»·¼«µã×óÒÆÊ±£¬ÏµÍ³µÄ±Õ»·¸ù¹ì¼£ÏòÓÒÍäÇú¡£

5£®Ó¦ÓÃÃèÊöº¯Êý·¨·ÖÎö·ÇÏßÐÔϵͳ£¬±ØÐëÂú×ãÒ»¶¨µÄÌõ¼þ£¬ÏÂÁÐÑ¡ÏîÖв»ÕýÈ·µÄÊÇ£¨£©¡£ A£®·ÇÏßÐÔϵͳӦÄܼò»¯³ÉÒ»¸öÏßÐÔ»·½ÚºÍÒ»¸öÏßÐÔ²¿·Ö±Õ»·Á¬½ÓµÄµäÐͽṹÐÎʽ B£®·ÇÏßÐÔ»·½ÚµÄÊäÈëÊä³öÌØÐÔy(x)Ó¦ÊÇxµÄÆæº¯Êý C£®·ÇÏßÐÔ»·½ÚµÄÊäÈëÊä³öÌØÐÔy(x)Ó¦ÊÇxµÄżº¯Êý D£®ÏµÍ³µÄÏßÐÔ²¿·ÖÓ¦¾ßÓнϺõĵÍͨÂ˲¨ÐÔÄÜ

Èý¡¢ÒÑÖª¿ØÖÆÏµÍ³½á¹¹Í¼ÈçͼËùʾ£¬ÊÔÇóϵͳµÄ´«µÝº¯Êý£º£¨¹²13·Ö£© 1£®Í¨¹ý½á¹¹Í¼µÄµÈЧ±ä»»ÇóϵͳµÄ´«µÝº¯ÊýC(s)R(s)£»

2£®»æÖƽṹͼ¶ÔÓ¦µÄÐźÅÁ÷ͼ£¬ÓÃ÷ɭ¹«Ê½ÇóϵͳµÄ´«µÝº¯ÊýC(s)R(s)¡£

124

±¦¼¦ÎÄÀíѧԺÊÔÌâ

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð Æß ÊÊ Óà ר Òµ ×Ô¶¯»¯

ËÄ¡¢·ÖÎö¼ÆË㣨ÿСÌâ15·Ö£¬15¡Á4£½60·Ö£© 1£®ÒÑÖªRLCÍøÂçÈçͼËùʾ£º

¢Å£®ÁÐдϵͳ΢·Ö·½³Ìʽ£¬²¢Çó³öϵͳµÄ´«µÝº¯Êý

U0(s)Ui(s)£»

¢Æ£®Ð´³ö?n,?ÓëÔª¼þ²ÎÊýµÄ¹ØÏµ£»

¢Ç£®ÉèL?4H,C?1?F£¬ÈôÒªÇóϵͳ½×Ô¾ÏìÓ¦µÄ³¬µ÷Á¿?%?30%£¬ÇóR=£¿¡££¨ln0.3??1.204£©

2£®ÒÑÖªµ¥Î»·´À¡ÏµÍ³µÄ¿ª»·´«µÝº¯ÊýΪ£ºG(s)?Ks(s?2)(s?4)

¢Å¡¢»æÖƱջ·ÏµÍ³¸ù¹ì¼££¨¹Ø¼üµãÒª±êÃ÷£©£»

¢Æ¡¢¼ÆË㱣֤ϵͳÎȶ¨¹¤×÷µÄ×î´óKÖµ£»

¢Ç¡¢ÈôÒªÇóÊäÈëΪµ¥Î»Ð±ÆÂÐźÅʱϵͳµÄÎÈ̬Îó²î²»´óÓÚ0.5£¬ÊÔÈ·¶¨KÖµµÄ¿Éµ÷·¶Î§¡£

3£®ÏµÍ³µÄ¿ª»·´«µÝº¯ÊýΪ£ºG(s)?Ks(T1s?1)(T2s?1)

¢Å£®»æÖÆÏµÍ³µÄ¿ª»·¸ÅÂÔ·ùÏàÇúÏߣ»

¢Æ£®ÓÃÄÎÊÏÅоÝÅжϱջ·ÏµÍ³µÄÎȶ¨ÐÔ¡£

4£®¸ù¾Ý¸ø³öµÄÇúÏß×÷³öÏàÓ¦µÄ·ÖÎö¼ÆË㣺

¢Å£®ÒÑ֪ij×îСÏàλϵͳµÄ¿ª»·¶ÔÊý·ùÆµÌØÐÔÇúÏßÈçÏÂͼËùʾ£¬Ð´³öϵͳ¿ª»·´«µÝº¯ÊýG(s)£¬²¢¼ÆËãÏàλԣ¶ÈºÍ·ùÖµÔ£¶È£»

¢Æ£®ÈôϵͳԭÓеĿª»·´«º¯ÎªG(s)?ÖõĴ«µÝº¯Êý£»

100(1?0.1s)s2£¬¶øÐ£ÕýºóµÄ¿ª»·¶ÔÊý·ùƵÇúÏßÈçÏÂͼËùʾ£¬Çó´®ÁªÐ£Õý×°

125

±¦¼¦ÎÄÀíѧԺÊÔÌâ

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð °Ë ÊÊ Óà ר Òµ ×Ô¶¯»¯

Ò»¡¢Ìî¿ÕÌ⣨ÿ¿Õ2·Ö£¬2¡Á12£½24·Ö£©

1£®¿ª»·¿ØÖÆ·½Ê½Óë±Õ»·¿ØÖÆ·½Ê½Ïà±È£¬×îÖØÒªµÄÌØµãÊÇ£º ¡£ 2£®ÏßÐÔϵͳÓë·ÇÏßÐÔϵͳ²»Í¬µÄÊÇ¿ÉÒÔÓ¦Óà ¡£

3£®Ä³ÏµÍ³ÔÚÁã³õʼÌõ¼þϵĵ¥Î»½×Ô¾ÏìӦΪc(t)?1?e?e£¬Ôò¸ÃϵͳµÄ´«µÝº¯ÊýΪ ¡£ 4£®ÏµÍ³µÄʱÓòÐÔÄÜÖ¸±ê·ÖΪ ºÍ Á½´óÀà¡£

5£®µ±¸ß½×ϵͳµÄÁ㼫µã·Ö²¼Âú×ãÒªÇóʱ£¬²ÉÓà µÄ¸ÅÄî¿É½«¸ß½×ϵͳ½üËÆÎªÏàÓ¦µÄµÍ½×ϵͳ¡£ 6£®Ä³¶þ½×¿ØÖÆÏµÍ³£¬Æäµ¥Î»½×Ô¾ÏìӦǡºÃ²»³öÏÖ³¬µ÷£¬Ôò¸ÃϵͳµÄ×èÄá±ÈΪ ¡£ 7£®ÏµÍ³¿ª»·¶ÔÊý·ùÆµÌØÐÔÇúÏߵď߯µ¶Î¾ö¶¨Á˱ջ·ÏµÍ³µÄ ¡£

8£®µ±Êµ¼ÊÔª¼þ»òϵͳµÄ·ÇÏßÐԳ̶Ȳ»ÑÏÖØ£¬ÔÚÒ»¶¨Ìõ¼þÏ£¬¿ÉÒÔ²ÉÓà µÄ°ì·¨½«·ÇÏßÐÔ

Ä£Ðͼò»¯ÎªÏßÐÔÄ£ÐÍ¡£

9£®ÔÚ¸ÄÉÆ¶þ½×ϵͳÐÔÄܵķ½·¨ÖУ¬³£ÓõÄÓÐÁ½ÖÖ£º ºÍ ¡£ 10£®×îСÏàλϵͳÊÇÖ¸ ¡£ ¶þ¡¢µ¥ÏîÑ¡ÔñÌ⣨ÿСÌâ3·Ö£¬3¡Á3£½9·Ö£©

1£®ÎªÁ˼õС»òÏû³ýϵͳÔÚÈŶ¯×÷ÓÃϵÄÎÈ̬Îó²î£¬²ÉÈ¡£¨ £©ÊÇûÓÐЧ¹ûµÄ¡£ A£®Ôö´óÈŶ¯×÷ÓõãºóϵͳµÄǰÏòͨµÀÔöÒæ B£®Ôö´óÈŶ¯×÷ÓõãǰϵͳµÄǰÏòͨµÀÔöÒæ C£®ÔÚϵͳµÄÖ÷·´À¡Í¨µÀÖÐÉèÖûý·Ö»·½Ú D£®²ÉÓô®¼¶¿ØÖÆ·½Ê½

2£®µ±¶þ½×ϵͳµÄ²ÎÁ¿±ä»¯Ê±£¬ÏÂÁÐ¶ÔÆäÐÔÄܱ仯µÄ¶¨ÐÔ·ÖÎö£¬£¨ £©ÊÇÕýÈ·µÄ¡£ A£®×èÄá±ÈԽС£¬ÏµÍ³ÏìӦԽƽÎÈ¡£ B£®Ïà½ÇÔ£¶È?Ô½´ó£¬ÏµÍ³ÏìӦԽƽÎÈ¡£

?2t?tC£®±Õ»·Ð³Õñ·åÖµMrÔ½´ó£¬ÏµÍ³ÏìӦԽƽÎÈ¡£

D£®ÏµÍ³µÄÎȶ¨³Ì¶ÈÏ൱ʱ£¬¿ª»·½ØÖÁƵÂÊ?cÔ½¸ß£¬ÏµÍ³ÏìÓ¦Ô½»ºÂý¡£ 3£®ÏÂÁи÷ÏîÊÇ´«µÝº¯ÊýÁ㼫µã¶ÔϵͳÏìÓ¦µÄÓ°Ï죬ÕýÈ·µÄÃèÊöÊÇ£¨ £©¡£ A£®´«º¯µÄÿһ¸öÁãµã¶¼ÔÚÏìÓ¦ÖÐÐγÉÏàÓ¦µÄ×ÔÓÉÔ˶¯µÄģ̬ B£®´«º¯µÄÿһ¸ö¼«µã¶¼ÔÚÏìÓ¦ÖÐÐγÉÏàÓ¦µÄ×ÔÓÉÔ˶¯µÄģ̬ C£®´«º¯µÄ¼«µãÓ°Ïì¸÷ģ̬ÔÚϵͳÏìÓ¦ÖÐËùÕ¼µÄ±ÈÖØ

D£®´«º¯µÄÁãµã²»Ó°Ïì¸÷ģ̬ÔÚϵͳÏìÓ¦ÖÐËùÕ¼µÄ±ÈÖØ

Èý¡¢Çó½âÏÂͼËùʾϵͳµÄ´«µÝº¯Êý£¨µÚһСÌâ3·Ö£¬µÚ¶þСÌâ4·Ö£¬3+4£½7·Ö£© 1£®ÇóÓÐÔ´ÍøÂçµÄ´«µÝº¯ÊýUc(s)Ur(s)£»

2£®Çó½âϵͳ¶ÔÈŶ¯µÄ´«µÝº¯ÊýC(s)N(s)¡£

ËÄ¡¢·ÖÎö¼ÆË㣨ÿСÌâ15·Ö£¬15¡Á4£½60·Ö£©

1£®ÒÑ֪ϵͳ½á¹¹ÈçÏÂͼËùʾ£º¢Å£®ÇóϵͳµÄµ¥Î»½×Ô¾ÏìÓ¦£»

126

±¦¼¦ÎÄÀíѧԺÊÔÌâ

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð °Ë ÊÊ Óà ר Òµ ×Ô¶¯»¯

¢Æ£®ÅжÏϵͳµÄÎȶ¨ÐÔ¡£

2£®ÒÑ֪ϵͳÈçÏÂͼËùʾ£º ¢Å£®»­³öϵͳµÄ¸ù¹ì¼££»

¢Æ£®Çó³öʹϵͳÎȶ¨µÄKÖµ·¶Î§¡£

3£®ÉèϵͳµÄ¿ª»·´«µÝº¯ÊýΪ£ºG(s)?

4£®ÒÑ֪ϵͳԭÀ´µÄ¿ª»·´«º¯ÎªG(s)?

K(Ts?1)(?s?1)£¬»­³öµ±K>1ʱµÄÄÎÊÏÇúÏߣ¨·Ö??T,??T,??TÈýÖÖÇé

¿ö£©£¬²¢Åж϶ÔÓ¦±Õ»·ÏµÍ³µÄÎȶ¨ÐÔ¡£

100(1?0.1s)s2£¬Ð£Õý×°ÖõĴ«º¯ÎªG(s)?c0.25s?1(0.01s?1)(0.1s?1)¡£

¢Å£®»­³öԭϵͳºÍУÕý×°ÖõĶÔÊý·ùÆµÌØÐÔÇúÏߣ»

¢Æ£®µ±²ÉÓô®ÁªÐ£Õýʱ£¬ÇóУÕýºóϵͳµÄ¿ª»·´«º¯£¬²¢¼ÆËãÆäÏàλԣ¶ÈºÍ·ùÖµÔ£¶È¡£

127

±¦¼¦ÎÄÀíѧԺÊÔÌâ²Î¿¼´ð°¸ÓëÆÀ·Ö±ê×¼

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð Ò» ÊÊ Óà ר Òµ ×Ô¶¯»¯

Ò»¡¢£®(ÿ¿Õ2·Ö£¬¹²20·Ö)£¨1£©¿ØÖÆ (2)¹Å£¨¾­£©µäºÍÏÖ´ú (3)´«µÝº¯Êý (4)Îȶ¨ÐÔ (5)ÎÈ̬Îó²îºÍ˲̬ÏìÓ¦ £¨6£© ÀÍÊÏ/ºÕ¶ûάÊÏ/ÄοüË¹ÌØ/²®µÂ(8)¸ù¹ì¼£ (9)¿ª»·ÔöÒæ/tʱ¼ä³£Êý £¨10£©MATLAB ¶þ¡¢(10·Ö)C£¨S£©/R£¨S£©=£¨W1W2W3£©/£¨1+W1W2H1+W2W3H2+W1W2W3H3£© Èý¡¢(15·Ö)G£¨S£©=£¨K/T£©/[S£¨S+1/T£©] 2·Ö

1/2

wn=£¨K/T£© 2·Ö 2¦Æwn=1/T 2·Ö 3.5/(¦Æwn)=7 2·Ö

-(¦Æ§á)/(1-¦Æ2) 1/2

e*100%=16% 3·Ö

¦Æ=0.5 wn=1 K=1 T=1 ¸÷1·Ö ËÄ¡¢(15·Ö)

£¨1£©n=3,p1=0,p2=p3=-1/2

m=1,z1=-1 Á㼫µãÇóÕýÈ·¸÷1·Ö

(2) real axis:[-1,0] 1·Ö (3) asymptotes:

¦Ò=(-1/2-1/2+1)/(3-1)=0 2·Ö ¦µ=(2k+1)§±/(3-1)=+§±/2,-§±/2 2·Ö

(4)break-away point:-0.19,-1.31(false) 3·Ö (5)root locus as following: 5·Ö Îå¡¢£¨20·Ö£©

1£®´®Áª³¬Ç°Ð£Õý 3·Ö

2£®Í¼ÂÔ£¨Âú×ãÒªÇóµÄÒ»ÖÖͼ¼´¿É£© 3·Ö 3£®Í¼ÂÔ£¨Âú×ãÒªÇóµÄÒ»ÖÖͼ¼´¿É£¬µ« ±ØÐëÓëµÚ¶þ²½Ïà¶ÔÓ¦£© 4·Ö 4£®procedures:

(1) from ess,get K;

(2) from wc,determine new wc; (3) through wc,draw a line ,

it's slope is ¨C20db/dec; (4) get 1/(aT),1/T£»

(5) check magnitude margin

and phase margin£» (6) simulation. 10·Ö

Æß¡¢the point out is oscilating,the point in is unstable. 10·Ö °Ë¡¢z1=-1.156+1.29j,z2=-1.156-1.29j 8·Ö

not stable. 2·Ö

128

±¦¼¦ÎÄÀíѧԺÊÔÌâ²Î¿¼´ð°¸ÓëÆÀ·Ö±ê×¼

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð ¶þ ÊÊ Óà ר Òµ ×Ô¶¯»¯

1£® (1)forward path£º4£¬feedback loop£º5 ¸÷4·Ö

C(z)G(z) (2) 7·Ö ?R(z)1?GH1(z)H2(z)2£® ?(s)?k1k2s2?as?k2,k1?2,0.8?2??n1-?2,2.32?22???1-?2?100%?e?100%

??0.5,?n?4.5,k2?4.5?20.25,a?2 ÿ¸öδ֪Á¿Çó½âÕýÈ·5·Ö

3£®

s???j?1?k(??j??2)(??j??3)(??j?)(??j??1£©?0arctg???2????arctg???3????arctg???arctg???1?(2k?1)?

1???2?32??3????1???1?32??2??3)2??2???1)2(???(ÿ²½Öè3·Ö

4£®

G(j?)H(j?)?10(5j??1)(10j??1)????G(j0)H(j0)?10?0

G(j?)H(j?)?0??180Im[G(j?)H(j?)]<0 £¬ ?(?) from 0 to ?180¡£P=0,the nyquist curve does not surround£¨-1£¬j0£©,R=0,

Z=P-2R=0,stble¡£

In general,G(s)H(s)?K(T1s?1)(T1s?1),to all the K£¬T1£¬T2£¬the nyquist curve is similar to the above,

stable .

Ö¤Ã÷³öϵͳÎȶ¨8·Ö ÕýÈ·»­³öÇúÏßͼ4·Ö ÓÃÄÎÊÏÅоÝÖ¤Ã÷ϵͳÎȶ¨ÐÔ 3·Ö 5£®(1)settling time£ºts1¦Ò1>¦Ò2 4·Ö (2)ess2>ess1>ess3 4·Ö (3£©¦Ã2>¦Ã1£¬h2>h1 8·Ö 6£®

129

±¦¼¦ÎÄÀíѧԺÊÔÌâ²Î¿¼´ð°¸ÓëÆÀ·Ö±ê×¼

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð ¶þ ÊÊ Óà ר Òµ ×Ô¶¯»¯

?1?N£¨A£©? 3·Ö

4?111?(1)2??arcsin???AAA?when A =1,-1/N(A)=-0.5.when A¡ú¡Ø,-1/N(A)=-¡Ø.thus,-1/N(A) lies in ¨C0.5~-¡Ø

linear part:G£¨j?)?K1?2)]j?(0.1j??1)(0.2j??1)?K1[?0.3??j(1?0.02?[0.0004?2?0.05?2?1]

set Im(G(j?)=0,that is 1?0.02?2=0,we get ?=7.07(rad/s) so the point to the real axis is Re(G(j?)=?0.3K14.5 8·Ö

?0.3K10.5?4.54.5??0.5soK1MAX?0.3?7.5 4·Ö

7.

num=[1 2 3 4];den=[5 6 7 8 9],step(num,den);impulse(num,den) 5·Ö

130

±¦¼¦ÎÄÀíѧԺÊÔÌâ²Î¿¼´ð°¸ÓëÆÀ·Ö±ê×¼

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð Èý ÊÊ Óà ר Òµ ×Ô¶¯»¯

2£® £¨±¾Ìâ¹²30·Ö£¬Ã¿Ìâ3·Ö£©

1.1 (3) 1.2 (2) 1.3 (3) 1.4 £¨2) 1.5 (3) 1.6 (2) 1.7 (2) 1.8 (3) 1.9 (3) 1.10 (1) 2£®Ã¿Ìâ5·Ö C(s)G1G2G3?1C(z)G(z)(1) ? (2) ?R(S)1?G1G2G5?G2G3G4?G2G4G5R(z)1?GH1(z)H2(z) 3£®

?(s)?k1k2s2?as?k2,k1?2,0.8?2??n1-?2,2.32?22???1-?2?100%?e?100%

??0.5,?n?4.5,k2?4.5?20.25,a?2K1 ¡¢ K2 and a¸÷5·Ö

4.

(1) n=3,p1=0,p2= -1,p3= -2 3·Ö (2) real axis:[-1,0],[-¡Ø,-2] 2·Ö (3) asymptotes: ¦Ò=(-1-2)/3=-1 2·Ö

¦µ=(2k+1)§±/(3-0)=+§±/3,§± 2·Ö

(4)break-away point:-0.423,-1.577(false) 2·Ö (5)imaginary axis cross- point:

root locus as following: 4·Ö 5£®

K=1£¬3·Öwc=1, 2·Ö G(S)=100/[S(S2+2S+100)],3·Ö r=90o,3·Ö h=20, 3·Ö stable 1·Ö 6£®

1? 4·Ö ??N£¨A£©?1112?4?arcsin?1?()?AAA??when A =1,-1/N(A)=-0.5.when A¡ú¡Ø,-1/N(A)=-¡Ø.thus,-1/N(A) lies in ¨C0.5~-¡Ø linear part:G£¨j?)?K1j?(0.1j??1)(0.2j??1)0.3K14.5

?K1[?0.3??j(1?0.02?)]2?[0.0004?2?0.05?2?1]

2set Im(G(j?)=0,that is 1?0.02?=0,we get ?=7.07(rad/s)

so the point to the real axis is Re(G(j?)=??0.3K14.5??0.5soK1MAX? 8·Ö

0.5?4.50.3?7.5 3·Ö

131

±¦¼¦ÎÄÀíѧԺÊÔÌâ²Î¿¼´ð°¸ÓëÆÀ·Ö±ê×¼

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð ËÄ ÊÊ Óà ר Òµ ×Ô¶¯»¯

1£®(ÿ¿Õ2·Ö£¬¹²20·Ö)£¨1£©±Õ»·¿ØÖÆ (2)·ÇÏßÐÔ (3)´«µÝº¯Êý (4)Îȶ¨ÐÔ (5)ÎÈ̬Îó²î (6)˲̬ÏìÓ¦ £¨7£©ÀÍÊÏ/ºÕ¶ûάÊÏ/ÄοüË¹ÌØ/²®µÂ (8)¸ù¹ì¼£ (9)¿ª»·ÔöÒæ/tʱ¼ä³£Êý (10)0

2£®(10·Ö)C£¨S£©/R£¨S£©=£¨W1W2W3£©/£¨1+W1W2H1+W2W3H2+W1W2W3H3£© 3£®¸ÃϵͳΪǷ×èÄá¶þ½×ϵͳ£¬´ÓͼÖÐÖ±½ÓµÃ³ö ?%?30% tp?0.1s

??? ¸ù¾Ý¹«Ê½ ?%?e? tp??0.1

2?n1?? ?? ?n?ÓÚÊÇ¿ª»·´«µÝº¯ÊýΪ G(s)??n21??2?0.3

(ln?)22?2?(ln?)?0.358 (5·Ö)

?1?tp1??2?33.65s (5·Ö)

s(s?2??)?1132.3s(s?24.1) (5·Ö)

4£®(1) n=3,p1=0,p2=p3=-1/2 m=1,z1=-1 (3·Ö) (2) real axis:[-1,0] (3·Ö)

(3) asymptotes: ¦Ò=(-1/2-1/2+1)/(3-1)=0

¦µ=(2k+1)§±/(3-1)=+§±/2,-§±/2 (3·Ö)

(4)break-away point:-0.19,-1.31(false) (3·Ö) (5)root locus as following: (3·Ö)

5.G0(s)?10s(0.2s?1)?(20lgK?20,K?10)GC1(s)?G(s)?2(s?1)10s?1?(20lgK?6,K?2)?lagcorrection20(s?1)s(10s?1)(0.2s?1) (µÚ1СÌâ8·Ö£¬µÚ2СÌâ12·Ö) 6£®s3+14s2+40s+40k=0

s3 1 40 2

s 14 40k s1 (14*40-40k)/14 0 0

s 40k

conclusion 0¡Ük¡Ü14 (10·Ö) ess=0 (5·Ö)

7.ËÀÇø¡¢±¥ºÍ¡¢¼ä϶¡¢¼ÌµçµÈ¡£(2·Ö)

С·¶Î§ÏßÐÔ»¯¡¢·Ö¶ÎÏßÐÔ»¯¡¢ÏàÆ½Ãæ·¨¡¢ÃèÊöº¯Êý·¨¡¢lyapunov·¨¡¢·ÂÕæµÈ¡£(3·Ö)

132

±¦¼¦ÎÄÀíѧԺÊÔÌâ²Î¿¼´ð°¸ÓëÆÀ·Ö±ê×¼

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð Îå ÊÊ Óà ר Òµ ×Ô¶¯»¯

Ò»¡¢¶àÏîÑ¡ÔñÌ⣨ÿСÌâ5·Ö£¬5¡Á5£½25·Ö£© 1¡¢ACD 2¡¢BE 3¡¢AE 4¡¢ACE 5¡¢B

¶þ¡¢ÒÑÖªRCÎÞÔ´ÍøÂçÈçͼËùʾ£¬ÊÔÓø´×迹·¨»­³öϵͳ½á¹¹Í¼£¬²¢Çó³öÆä´«µÝº¯Êý

U0(s)Ui(s)¡££¨¹²15·Ö£©

Ui(s)?I1(s)R1?Uc1(s)I1(s)?I2(s)?Uc1(s)C1sI2(s)?(U1c1(s)?U0(s))?R £¨4·Ö£©

2U0(s)?I2(s)?1C2s £¨5·Ö£©

U0(s)U2 £¨6·Ö£©

i(s)?1R1R2C1C2s?(R1C1?R2C2?R1C2)s?1 Èý¡¢·ÖÎö×÷ͼ£¨¹²15·Ö£©

¸ù¹ì¼£¹²ÓÐ4Ìõ·ÖÖ§£¬Ê¼ÓÚËĸö¼«µã£¬¶¼Ç÷ÏòÓÚÎÞÇîÔ¶´¦£» ½¥½üÏß¹²ÓÐËÄÌõ£¬½»ÓÚʵÖáÉϵĵ㣨0,-2£©£¬Çã½Ç·Ö±ðΪ?,3?5?44,4,7?4£» ʵÖáÉϵĸù¹ì¼£ÔÚÁ½¸ö¼«µãÖ®¼ä£¬¼´£¨-4,0£©Çø¼ä£» ·ÖÀëµãÓÐÈý¸ö£¬½â·½³Ì

1?1?1dd?4d2?4d?20?0£¬µÃµ½·ÖÀëµãΪ-2£¬?2?j6 ÓëÐéÖá½»µãΪ?j10 ËÄ¡¢·ÖÎö¼ÆË㣨ÿСÌâ15·Ö£¬15¡Á3£½45·Ö£©

5·Ö£©

2·Ö£©

2·Ö£© 3·Ö£©

3·Ö£©

133

£¨£¨ £¨£¨ £¨±¦¼¦ÎÄÀíѧԺÊÔÌâ²Î¿¼´ð°¸ÓëÆÀ·Ö±ê×¼

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð Îå ÊÊ Óà ר Òµ ×Ô¶¯»¯

1¡¢£¨1£©±Õ»·ÌØÕ÷·½³ÌΪ£º

TTs3?(T?T)s21212?s?K1K2?0 £¨2·Ö£© ÁÐдÀÍ˹±í£¬ÁîµÚÒ»ÁÐϵÊýÈ«²¿ÎªÕý£¬¿ÉµÃ£º

0?KT1?T21K2?T £¨3·Ö£©

1T2 £¨2£©ÏµÍ³¿ª»·´«º¯Îª£ºG(s)?K1K2s(T1s?1)(T

2s?1) ÒÀ¾Ý¾²Ì¬Îó²îϵÊý·¨£¬¸ø¶¨Ð±ÆÂ×÷ÓÃϵÄÎÈ̬Îó²îΪ£ºessr?RK £¨4·Ö£©

1K2 ÈŶ¯Îó²î´«º¯Îª£º?en(s)??K2(T1s?1)T31T2s?(T21?T2)s?s?K

1K2essn?lims??en(s)?N(s)?N0K £¨4·Ö£©

s?1 £¨3£©Ôö´óK1ºÍK2 £¨2·Ö£©

2¡¢ÏµÍ³µÄÄÎÊÏÇúÏßÓ븺ʵÖáÓÐÒ»¸ö½»µã£¬ÒÀ¾ÝÄÎÊÏÅоݸõãλÓÚ£¨-1,j0£©ÓÒ²àʱ£¬ÏµÍ³Îȶ¨¡£

G(j?)?K1?T)(1??2T)j?(1?j?T)(1?j?)??K((1??2T2)(1??2)?jK?(1??2T2)(1??2) £¨2·Ö£©

Ó븺ʵÖá½»µã×ø±êΪ£º?K(1?T)(1??2T2)(1??2) ÇÒ ?2?1T

µ±ÏµÍ³Îȶ¨Ê±Âú×㣺

?K(1?T)(1??2T2)(1??2)??1 £¨2·Ö£©

Çó½â²»µÈʽ¼´¿ÉµÃµ½£º

£¨1£©K?1.5 £¨4·Ö£© £¨2£©T?1/9 £¨4·Ö£© £¨3£©K?1?1/T £¨3·Ö£© 3¡¢£¨1£©²ÉÓõÄÊÇ´®ÁªÖͺó-³¬Ç°Ð£Õý£¬ÇÒ 2

Gc(s)?(s?1)(10s?1)(0.1s?1) £¨6·Ö£©

£¨2£©Ð£ÕýºóϵͳµÄ¿ª»·´«º¯Îª£º

Gk2(s)?s(0.1s?1)(0.01s?1)

ϵͳ±Õ»·ÌØÕ÷·½³ÌΪ£ºs3?110s2?1000s?1000k?0 £¨1·Ö£©

ÁÐдÀÍ˹±í£¬ÇóµÃϵͳÎȶ¨Ê±µÄKÖµ·¶Î§£º0?K?110 £¨4·Ö£© £¨3£©??83.72? £¨4·Ö£©

134

±¦¼¦ÎÄÀíѧԺÊÔÌâ²Î¿¼´ð°¸ÓëÆÀ·Ö±ê×¼

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð Áù ÊÊ Óà ר Òµ ×Ô¶¯»¯

Ò»¡¢ÅжÏÌ⣨ÿСÌâ2·Ö£¬2¡Á5£½10·Ö£© 1¡¢¡Ì 2¡¢¡Á 3¡¢¡Á 4¡¢¡Á 5¡¢¡Á

¶þ¡¢Çó½âÏÂͼËùʾϵͳµÄ´«µÝº¯Êý£¨Ã¿Ð¡Ìâ5·Ö£¬5¡Á2£½10·Ö£© 1¡¢

C(s)G1)R(s)?G2(1?1?G

2H1?G2H22¡¢

C(s)590R(s)?39?15.12

Èý¡¢·ÖÎö×÷ͼ£¨µÚÒ»Ìâ15·Ö£¬µÚ¶þÌâ5·Ö£¬15+5£½20·Ö£© 1¡¢¿ª»·´«µÝº¯ÊýΪ£ºG(s)?K(s?10)s(s?1)(s?2) £¨5·Ö£©

£¨5·Ö£©

ʵÖáÉϵĸù¹ì¼£Çø¼äΪ(-10,-2)£¬(-1,0)£» £¨2·Ö£© ¸ù¹ì¼£µÄÁ½Ìõ½¥½üÏß½»ÓÚµã(3.5,0)£¬Çã½Ç·Ö±ðΪ??2 £¨3·Ö£©

2¡¢ÈÎÒâ»­³öÁ½ÖÖ¼´¿É£¬Ã¿¸ö2.5·Ö £¨5·Ö£©

xcxcxcKKaaxraxrxrËÄ¡¢·ÖÎö¼ÆË㣨ÿСÌâ15·Ö£¬15 ¡Á

4£½60·Ö£© 1¡¢£¨1£©ÏµÍ³±Õ»·´«º¯Îª£º?(s)?20Ks2?s?20K £¨2·Ö£©

Óë¶þ½×ϵͳ±ê×¼´«º¯¶ÔÕÕ£¬µÃµ½£ºK=0.05 £¨4·Ö£©

135

±¦¼¦ÎÄÀíѧԺÊÔÌâ²Î¿¼´ð°¸ÓëÆÀ·Ö±ê×¼

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð Áù ÊÊ Óà ר Òµ ×Ô¶¯»¯

£¨2£©??0.5,?n?1,R(s)?60/s h(t)?60(1?2e?0.5tsin(3 £¨3·Ö£©

32t??3)) h(1)?20.4 £¨3·Ö£©

2h(tp)?60(1?e???/1??)?69.8 £¨3·Ö£©

2¡¢£¨1£©0?K?100 £¨7·Ö£©

£¨2£©0?K?100 £¨8·Ö£©

3¡¢Gc(s)?(1?s)(1?0.25s)(1?10s)(1?0.025s) £¨4·Ö£©

£¨1£©´®ÁªÐ£ÕýÍøÂçΪÖͺó-³¬Ç°Ð£Õý £¨4·Ö£© £¨2£©ÏµÍ³µÄÎȶ¨Ô£¶ÈÔö´ó£¬¿ìËÙÐÔ±äºÃ £¨7·Ö£©4¡¢f(k?2)?3f(k?1)?2f(k)??(t) F(z)?1(z?1)(z?2) F(z)?12?z1z?1?2?zz?2

f(k)?12?(k)?1k?12?2k(k?0,1,2,?)

6·Ö£©

£¨9

·Ö£©

136

£¨±¦¼¦ÎÄÀíѧԺÊÔÌâ²Î¿¼´ð°¸ÓëÆÀ·Ö±ê×¼

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð Æß ÊÊ Óà ר Òµ ×Ô¶¯»¯

Ò»¡¢Ìî¿ÕÌ⣨ÿ¿Õ1·Ö£¬1¡Á17£½17·Ö£© 1£®¿ª»·¿ØÖÆ·½Ê½ ±Õ»·¿ØÖÆ·½Ê½ 2£®Îȶ¨ÐÔ ¿ìËÙÐÔ ×¼È·ÐÔ

3£®Áã³õʼÌõ¼þÏÂϵͳÊä³öµÄÀ­Êϱ任ÓëÊäÈëµÄÀ­Êϱ任֮±È 4£®(0,1)

5£®¾ßÓиºÊµ²¿»òλÓÚs×ó°ëÆ½Ãæ

6£®ÏµÍ³Ðͱ𠿪»·ÔöÒæ ÊäÈëÐźŵÄÐÎʽºÍ·ùÖµ

7£®¿ª»·ÏµÍ³Ä³Ò»²ÎÊý´ÓÁã±ä»¯µ½ÎÞÇîʱ£¬±Õ»·ÏµÍ³ÌØÕ÷·½³ÌʽµÄ¸ùÔÚsÆ½ÃæÉϱ仯µÄ¹ì¼£¡£8£®»ý·Ö»·½Ú»òÕß΢·Ö»·½ÚµÄÊýÄ¿

9£®³¬Ç°Ð£Õý ÖͺóУÕý Öͺó-³¬Ç°Ð£Õý

10£®ÕýÏÒÊäÈëÐźÅ×÷ÓÃÏ£¬·ÇÏßÐÔ»·½ÚµÄÎÈ̬Êä³öÖÐÒ»´Îг²¨·ÖÁ¿ºÍÊäÈëÐźŵĸ´Êý±È¡£ ¶þ¡¢µ¥ÏîÑ¡ÔñÌ⣨ÿСÌâ2·Ö£¬2¡Á5£½10·Ö£© 1¡¢B 2¡¢A 3¡¢B 4¡¢D 5¡¢B 6¡¢C

Èý¡¢ÒÑÖª¿ØÖÆÏµÍ³½á¹¹Í¼ÈçͼËùʾ£¬ÊÔÇóϵͳµÄ´«µÝº¯Êý£º£¨¹²13·Ö£© 1¡¢

£¨2·Ö£©

£¨2·Ö£©

C(s)R(s)?G1G2G3G41?G £¨2·Ö£©

2G3H 2?G3G4H3?G1G2G3G4H12¡¢

£¨4·Ö£©

C(s)G1G2G3G4R(s)?1?G2G3H2?G3G £¨3·Ö£©

4H3?G1G2G3G4H1

ËÄ¡¢·ÖÎö¼ÆË㣨ÿСÌâ15·Ö£¬15¡Á4£½60·Ö£© 1¡¢£¨1£©Ld2u0(t)dt2?RCdu0(t)dt?u0(t)?ui(t) £¨3·Ö£©

U0(s)?1Ui(s)Ls2?RCs?1 £¨3·Ö£©

137

±¦¼¦ÎÄÀíѧԺÊÔÌâ²Î¿¼´ð°¸ÓëÆÀ·Ö±ê×¼

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð Æß ÊÊ Óà ר Òµ ×Ô¶¯»¯

£¨2£©?1??RCn?L £¨4·Ö£© 2L?%?e???/1??2?100%?30%??0?0.358 £¨3£©

£¨5·Ö£©

R?2L?0C?1.432M?2¡¢£¨1£©n=3£¬m=0

¹²ÓÐ3Ìõ¸ù¹ì¼£·ÖÖ§

ÎÞÇîÔ¶´¦µÄ½¥½üÏßÓÐ3Ìõ£¬½»ÓÚʵÖáÉϵĵã(-2,0)£¬Çã½Ç·Ö±ðΪ60?,180?,300? ʵÖáÉϵĸù¹ì¼£Çø¼äÊÇ(-2,0),(-¡Þ,-4) 11d?d?2?1d?4?0

½âµÃ·ÖÀëµãԼΪ-0.8453 ÔÚ±Õ»·ÌØÕ÷·½³ÌÖÐÁîs?jw£¬ÇóµÃÓëÐéÖá½»µã´¦µÄƵÂÊΪw?22 £¨2£©K=48 £¨2·Ö£©

£¨3£©G(s)?K/8s(0.5s?1)(0.25s?1) e1ss?K/8?0.5?K?16

¿¼Âǵ½Îȶ¨ÐÔÒªÇó£¬È·¶¨KÖµµÄ¿Éµ÷·¶Î§Îª£º16¡ÜK¡Ü48 3¡¢£¨1£©

£¨10·Ö£©

£¨2£©µ±K?T1?T2T1Tʱ£¬±Õ»·ÏµÍ³Îȶ¨

2£¨2·Ö£©

£¨2·Ö£©

£¨3·Ö£©

£¨2·Ö£©

£¨4·Ö£©

138

±¦¼¦ÎÄÀíѧԺÊÔÌâ²Î¿¼´ð°¸ÓëÆÀ·Ö±ê×¼

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð Æß ÊÊ Óà ר Òµ ×Ô¶¯»¯

µ±K?T1?T2T1T22ʱ£¬±Õ»·ÏµÍ³ÁÙ½çÎȶ¨£»

£¨5·Ö£©

?100?0.25wc24¡¢£¨1£©G(s)?

100(0.25s?1)s(0.01s?1)2L(wc)?100(0.25wc?1)?25?1?wc?25 £¨2·Ö£©

wc(0.01wc?1)wc?1wc ?(wc)?arctan(0.25wc)?180??arctan(0.01wc)??180??66.9?

??180???(wc)?66.9? ¿ª»·ÏµÍ³µÄÏà½ÇʼÖÕ´óÓÚ?180?£¬¹Ê´©Ô½ÆµÂÊwx??£¬Ôòh??? £¨2£©²ÉÓô®ÁªÐ£Õý·½Ê½£¬ÔòÓУº

G.1s?1)100(0.25s?1)c(s)?100(0s2?s2(0.01s?1) G?1c(s)?0.25s(0.01s?1)(0.1s?1)

µ±K?T1?T2Tʱ£¬±Õ»·ÏµÍ³²»Îȶ¨¡£ £¨5·Ö£©

1T2

2·Ö£© £¨2·Ö£© £¨2·Ö£©

£¨2·Ö£©

139

£¨ ±¦¼¦ÎÄÀíѧԺÊÔÌâ²Î¿¼´ð°¸ÓëÆÀ·Ö±ê×¼

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð °Ë ÊÊ Óà ר Òµ ×Ô¶¯»¯

Ò»¡¢Ìî¿ÕÌ⣨ÿ¿Õ2·Ö£¬2¡Á12£½24·Ö£©

1£®¿ª»·¿ØÖÆ·½Ê½ÏÂϵͳµÄÊä³öÁ¿²»»á¶ÔϵͳµÄ¿ØÖÆ×÷ÓÃÔì³ÉÓ°Ïì 2£®µþ¼Ó¶¨Àí 23£®G(s)?s?4s?2(s?1)(s?2)

4£®¶¯Ì¬ÐÔÄÜÖ¸±ê ÎÈ̬ÐÔÄÜÖ¸±ê 5£®Ö÷µ¼¼«µã 6£®??1

7£®¿¹¸ÉÈÅÐÔÄÜ 8£®Ð¡Æ«²îÏßÐÔ»¯

9£®±ÈÀý-΢·Ö¿ØÖÆ ²âËÙ-·´À¡¿ØÖÆ 10£®ÏµÍ³µÄÁ㼫µãÈ«²¿Î»ÓÚ×ó°ësÆ½Ãæ

¶þ¡¢µ¥ÏîÑ¡ÔñÌ⣨ÿСÌâ3·Ö£¬3¡Á3£½9·Ö£© 1¡¢A 2¡¢B 3¡¢B

Èý¡¢Çó½âÏÂͼËùʾϵͳµÄ´«µÝº¯Êý£¨µÚһСÌâ3·Ö£¬µÚ¶þСÌâ4·Ö£¬3+4£½7·Ö£©1¡¢Uc(s)1C1s?2)U??R1(Rr(s)R 02¡¢

C(s)?G3G4N(s)?G1G2G3G51?G

1G2G3ËÄ¡¢·ÖÎö¼ÆË㣨ÿСÌâ15·Ö£¬15¡Á4£½60·Ö£© 1¡¢£¨1£©G(s)?10s2?6s?10 £¨3·Ö£©

?n?210?3.16??0.95 £¨4·Ö£©

c(t)?1?1e???ntsin(?1??2n1??2??)?1?3.2e?3tsin(0.987t?18.19?) 2??arctan1????18.19? £¨2£©±Õ»·ÏµÍ³µÄÌØÕ÷¸ùΪ£ºP1,2??3?j È«²¿Î»ÓÚ×ó°ëÆ½Ãæ£¬ÏµÍ³Îȶ¨ 2¡¢£¨1£© 2j?135??2j £¨2£©K>1ʱϵͳÎȶ¨ 3¡¢

4·Ö£©

4·Ö£© 12·Ö£© 3·Ö£©

140

£¨ £¨ £¨ £¨±¦¼¦ÎÄÀíѧԺÊÔÌâ²Î¿¼´ð°¸ÓëÆÀ·Ö±ê×¼

¿Î³ÌÃû³Æ ×Ô¶¯¿ØÖÆÔ­Àí ÊÊ Óà ʱ ¼ä ´ó¶þµÚ¶þѧÆÚ ÊÔ¾íÀà±ð °Ë ÊÊ Óà ר Òµ ×Ô¶¯»¯

?K?K?K µ±T??ʱ£¬±Õ»·ÏµÍ³²»Îȶ¨£»

µ±T??ʱ£¬±Õ»·ÏµÍ³ÁÙ½çÎȶ¨£»

µ±T??ʱ£¬±Õ»·ÏµÍ³Îȶ¨¡£ 4¡¢£¨1£©

dBL???40?2110??1 £¨2£©G'(s)?100(0.25s?1)s2(0.01s?1) ??66.9?,h???

£¨12·Ö£¬Ã¿·ùͼ4·Ö£©

£¨3·Ö£© dBL???01?1410100? £¨8·Ö£©

£¨1·Ö£©

£¨6·Ö£©

141