y2x22228£®¹ýÍÖÔ²C£º2?2?1(a?b?0)ÉÏÒ»µãPÒýÔ²O£ºx?y?bµÄÁ½ÌõÇÐÏßPA¡¢PB£¬
abÇеãΪA¡¢B£¬Ö±ÏßABÓëxÖá¡¢yÖá·Ö±ðÏཻÓÚM¡¢NÁ½µã £¨1£©ÉèP(x0,y0)£¬ÇÒx0y0?0£¬ÇóÖ±ÏßABµÄ·½³Ì£»
a2b225£¨2£©ÈôÍÖÔ²CµÄ¶ÌÖ᳤Ϊ8£¬ÇÒ£¬Çó´ËÍÖÔ²µÄ·½³Ì£» ??2216|OM||ON|¡ú¡ú
£¨3£©ÊÔÎÊÍÖÔ²CÉÏÊÇ·ñ´æÔÚÂú×ãPA ¡¤PB =0µÄµãP£¬ËµÃ÷ÀíÓÉ£®
B×é
x2y2?1£®ÍÖÔ²£½£±µÄ½¹µã£Æ£±ºÍ£Æ£²£¬µãPÔÚÍÖÔ²ÉÏ£¬Èç¹ûÏ߶ÎP£Æ£±µÄÖеãÔÚyÖáÉÏ£¬123ÄÇô£ü£Ð£Æ£±£ü¡Ã£ü£Ð£Æ£²£üµÄֵΪ£¨ £©
A£®£·¡Ã£± B£®£µ¡Ã£± C£®£¹¡Ã£² D£®£¸¡Ã£³
2£®·½³Ìy£½ax2£«bÓëy2£½ax2£b±íʾµÄÇúÏßÔÚͬһ×ø±êϵÖеÄλÖÿÉÒÔÊÇ£¨ £©
3£®ÔÚ¸ø¶¨ÍÖÔ²ÖУ¬¹ý½¹µãÇÒ´¹Ö±ÓÚ³¤ÖáµÄÏÒ³¤Îª2 £¬½¹µãµ½ÏàÓ¦µÄ×¼ÏߵľàÀëΪ1£¬Ôò¸Ã
ÍÖÔ²µÄÀëÐÄÂÊÊÇ £¨ £©
122 C£® D£®
2244£®ÒÑÖªÍÖÔ²µÄ³¤ÖáµÄ³¤ÊǶÌÖáµÄ³¤µÄ£µ±¶£¬ÇÒ¾¹ýµã£¨£±£°£¬££µ£©ÔòÍÖÔ²µÄ±ê×¼·½³Ì
A£®2
B£®
Ϊ £®
x2?y2?1µÄ×óÓÒ½¹µã£¬5£®F1,F2·Ö±ðÊÇÍÖÔ²ABΪÆä¹ýµãF2ÇÒбÂÊΪ1µÄÏÒ£¬ÔòF1A?F1B4µÄֵΪ £®
x2y26£®ÒÑÖªÍÖÔ²C£º2?2£½£±£¨a£¾b£¾0)£¬ÉèбÂÊΪkµÄÖ±Ïßl½»ÍÖÔ²CÓÚA£¬BÁ½µã£¬A£¬
abBµÄÖеãΪM£¬Ö¤Ã÷µ±Ö±ÏßlƽÐÐÒƶ¯Ê±£¬¶¯µãMÔÚÒ»Ìõ¹ýÔµãµÄ¶¨Ö±ÏßÉÏ£®
x2y27£®ÍÖÔ²C£º2?2£½£±£¨a£¾b£¾0)µÄÁ½¸ö½¹µãΪF1£¬F2£¬µãPÔÚÍÖÔ²CÉÏ£¬ÇÒPF1¡ÍF1F2£¬
ab414|PF1|= £¬|PF2|= £®
33
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôÖ±Ïßl¹ýÔ²x2£«y2£«4x£2y=0µÄÔ²ÐÄM£¬½»ÍÖÔ²CÓÚA£¬BÁ½µã£¬ÇÒA£¬B¹ØÓÚµãM¶Ô³Æ£¬ÇóÖ±ÏßlµÄ·½³Ì£®
8£®ÍÖÔ²EÖÐÐÄÔÚÔµãO£¬½¹µãÔÚxÖáÉÏ£¬ÆäÀëÐÄÂÊe?2,¹ýµãC£¨£1£¬0£©µÄÖ±ÏßlÓë3
ÍÖÔ²EÏཻÓÚA¡¢BÁ½µã£¬ÇÒC·ÖÓÐÏòÏ߶ÎABµÄ±ÈΪ£¨1£©ÓÃÖ±ÏßlµÄбÂÊk(k¡Ù0)±íʾ¡÷OABµÄÃæ»ý£» £¨2£©µ±¡÷OABµÄÃæ»ý×î´óʱ£¬ÇóÍÖÔ²EµÄ·½³Ì£®
12£®1ÍÖÔ²
¡¾µäÐÍÀýÌâ¡¿
[Àý1] £¨1£©D£®Ìáʾ£º¾àÀëÖ®ºÍÇ¡ºÃµÈÓÚÁ½¶¨µã¼äµÄ¾àÀë¡£ £¨2£©C£®Ìáʾ£ºÔËÓÃÀëÐÄÂʵļÆË㹫ʽ¡£ £¨3£©C£®Ìáʾ£ºÓÃÍÖÔ²¶¨Ò壮
7
£¨4£©y=¡À £®Ìáʾ£ºÍÖÔ²µÄ½¹µãÔÚyÖáÉÏ¡£
2£¨5£©90¡ã£®Ìáʾ£ºÊýÐνáºÏ£¬Óù´¹ÉÄ涨Àí£®
Àý2¡¢£¨£±£©ÓÉ×¼Ïß·½³ÌΪx??8£¬¿ÉÖªÍÖÔ²µÄ½¹µãÔÚxÖáÉÏ
x2y2ÉèËùÇóÍÖÔ²µÄ·½³ÌΪ2?2?1(a?b?0)
abÓÉÌâÒ⣬µÃ e?c2? a2a2?8 ½âµÃa?42 c?4 cËùÒÔb?a?c?32?16?16
222x2y2??1 Òò´Ë£¬ËùÇóÍÖÔ²µÄ·½³ÌΪ
3216x2y2£¨£²£©µ±½¹µãÔÚxÖáÉÏʱ£¬ÉèËùÇóÍÖÔ²µÄ·½³ÌΪ2?2?1(a?b?0)
ab 2a?2b?20 a?b?10
22ÓÉÌâÒ⣬µÃ 2c?45 ¼´ a?b?20
½âµÃa?6 b?4
x2y2??1 ËùÒÔ½¹µãÔÚxÖáÉϵÄÍÖÔ²µÄ·½³ÌΪ
3216x2y2??1 ͬÀí¿ÉÇóµ±½¹µãÔÚyÖáÉÏÍÖÔ²µÄ·½³ÌΪ
1636x2y2x2y2??1ºÍ??1 Òò´Ë£¬ËùÇóµÄÍÖÔ²µÄ·½³ÌΪ
32161636
Àý3¡¢£¨1£©ÍÖÔ²ÓÒ×¼Ïßl£ºx= ¶¨ÒåÖª
|PF2| 3
= e = £¬ÓÚÊÇ£¬ |PN| 5
50
£¬¹ýµãP×÷PN¡ÍlÓÚµãN£¬ÈçͼËùʾÔòÓÉÍÖÔ²µÄµÚ¶þ3
5
|PN| = |PF2|
3
5
ËùÒÔ£¬|PM| + |PF2| = |PM| + |PN|¡Ýd(M£¬l)£¬
3ÆäÖÐd(M£¬l)±íʾµãMµ½×¼ÏßlµÄ¾àÀë Ò×ÇóµÃ d(M£¬l)=
44 3
544
ËùÒÔ£¬|PM| + |PF2|µÄ×îСֵΪ £¨´ËʱµãPΪ¹ýµãMÇÒ´¹Ö±ÓÚlµÄÏ߶ÎÓëÍÖÔ²µÄ½»
33µã£©
£¨2£©ÓÉÍÖÔ²µÄ¶¨ÒåÖª
|PF2|+|PF1|=2a=20£¬ ¹Ê |PM|+|PF2| = |PM|-|PF1|+20 1? |PM|-|PF1|¡Ü|MF1| =10£¬
¹Ê |PM|+|PF2|¡Ü30£¨µ±ÇÒ½öµ±PΪÓÐÏòÏ߶ÎMF£» 1µÄÑÓ³¤ÏßÓëÍÖÔ²µÄ½»µãʱȡ¡°=¡±£©2? |PF1|-|PM|¡Ü|MF1| =10£¬
¹Ê |PM|+|PF2|=20-£¨|PF1|-|PM|£©¡Ý10£¨µ±ÇÒ½öµ±PΪÓÐÏòÏ߶ÎMF1µÄ·´ÏòÑÓ³¤ÏßÓëÍÖÔ²µÄ½»µãʱȡ¡°=¡±£©
×ÛÉÏ¿ÉÖª£¬|PM|+|PF2|µÄÈ¡Öµ·¶Î§Îª[10£¬30]
Àý4¡¢(1)ÒÔOΪԵ㣬ֱÏßOAΪxÖὨÁ¢Ö±½Ç×ø±êϵ£¬ÔòA(2,0)£¬ÓÉÒÑÖªÉèÍÖÔ²·½³Ì
y2x2?2?1 4b¡ßAC?BC?0£¬¡àAC?BC£¬ÓÖ|BC|=2|AC| ÓÖBC¹ýÍÖÔ²ÖÐÐÄO£¬¡àC(1,1) ½«C(1,1)´úÈëÍÖÔ²·½³ÌµÃb2?x234£¬¼´ÍÖÔ²·½³ÌΪ?y2?1
443(2)ÒÀÌâÒâ¿ÉÉèPC£ºy=k(x-1)+1£¬QC£ºy=-k(x-1)+1
¡ßC(1,1)ÔÚÍÖÔ²ÉÏ£¬x=1ÊÇ·½³Ì(1+3k2)x2-6k(k-1)x+2k2-£¶k-1=0µÄÒ»¸ö¸ù ¡àxp?1? ¡àkPQ?3k2?6k?11?3k2£¬ÓÃ-k´ú»»xpÖеÄkµÃxQ?xp?xQ?1 3
3k2?6k?11?3k2
yp?yQxp?xQ?k(xp?xQ)?2k