tan??1或tan???1,∴45????90?或90????135?,综上
.
(2)点P坐标为(x,y),当??90?时,点P坐标
??(45?,135?)为(0,0),当??90?时,设直线l的方程为y?kx?2,A(x1,y1),B(x2,y2),∴
22??x?y?1①???y?kx?2②有x2?(kx?2)2?1,整理得,∴
(1?k2)x2?22kx?1?0,∴x?x12?22k1?k2,y?y12??221?k2?2kx?③?2?1?k??y??2④?1?k2?x得k??x代入④得y2?y2?2y?0.当点P(0,0)时
满足方程xx2?y2?2y?02?y2?2y?02,∴AB中点的P的轨迹方程是
221)?22,即x?(y?,由图可知,A(22,?2)2,
B(?22,?)22,则?2?y?02,故点P的参数方程为
?2cos??x??2??y??2?2sin???22(?为参数,0????).
20
23. 解答:
???3x,x??1(1)
?2f(x)???x?2,?1,如下图:
?2?x?1??3x,x?1?
(2)由(1)中可得:a?3,b?2,当a?3,b?2时,a?b取最小值, ∴a?b的最小值为5.
21