¿ÎʱѵÁ·(Ê®ËÄ) ¶þ´Îº¯ÊýµÄͼÏóÓëÐÔÖÊ(¶þ)
|º»Êµ»ù´¡|
1.Å×ÎïÏßy=2x-2¡Ì2x+1Óë×ø±êÖáµÄ½»µã¸öÊýÊÇ A.0
22
( )
2
B.1 C.2 D.3
2.Èô¶þ´Îº¯Êýy=x+mxµÄ¶Ô³ÆÖáÊÇÖ±Ïßx=3,Ôò¹ØÓÚxµÄ·½³Ìx+mx=7µÄ½âΪ ( ) A.x1=0,x2=6 C.x1=1,x2=-7
2
B.x1=1,x2=7 D.x1=-1,x2=7
3.[2019¡¤×Ͳ©]½«¶þ´Îº¯Êýy=x-4x+aµÄͼÏóÏò×óÆ½ÒÆÒ»¸öµ¥Î»,ÔÙÏòÉÏÆ½ÒÆÒ»¸öµ¥Î»,ÈôµÃµ½µÄº¯ÊýͼÏóÓëÖ±Ïßy=2ÓÐÁ½¸ö½»µã,ÔòaµÄȡֵ·¶Î§ÊÇ ( ) A.a>3
B.a<3
2
2
4
C.a>5
2
D.a<5
4.ÈçͼK14-1,ÒÑÖª¶þ´Îº¯Êýy1=3x-3xµÄͼÏóÓëÕý±ÈÀýº¯Êýy2=3xµÄͼÏó½»ÓÚµãA(3,2),ÓëxÖá½»ÓÚµãB(2,0),Èô0 ͼK14-1 A.0 B.0 2 C.2 5.[2019¡¤¶õÖÝ]¶þ´Îº¯Êýy=ax+bx+cµÄͼÏóÈçͼK14-2Ëùʾ,¶Ô³ÆÖáÊÇÖ±Ïßx=1.ÏÂÁнáÂÛ:¢Ùabc<0;¢Ú3a+c>0;¢Û(a+c)-b<0;¢Üa+b¡Üm(am+b)(mΪʵÊý).ÆäÖнáÂÛÕýÈ·µÄ¸öÊýΪ ( ) 2 2 ͼK14-2 A.1¸ö B.2¸ö C.3¸ö D.4¸ö 6.[2019¡¤ãòÖÝ]ÒÑÖª¶þ´Îº¯Êýy=(x-a-1)(x-a+1)-3a+7(ÆäÖÐxÊÇ×Ô±äÁ¿)µÄͼÏóÓëxÖáûÓй«¹²µã,ÇÒµ±x<-1ʱ,yËæxµÄÔö´ó¶ø¼õС,ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ ( ) A.a<2 B.a>-1 C.-1 D.-1¡Üa<2 2 7.[2019¡¤ºþÖÝ]ÒÑÖªa,bÊÇ·ÇÁãʵÊý,|a|>|b|,ÔÚÍ¬Ò»Æ½ÃæÖ±½Ç×ø±êϵÖÐ,¶þ´Îº¯Êýy1=ax+bxÓëÒ»´Îº¯Êý y2=ax+bµÄ´óÖÂͼÏ󲻿ÉÄÜÊÇ ( ) ͼK14-3 8.[2019¡¤¹ãÔª]ÈçͼK14-4,Å×ÎïÏßy=ax+bx+c(a¡Ù0)¹ýµã(-1,0),(0,2),ÇÒ¶¥µãÔÚµÚÒ»ÏóÏÞ,ÉèM=4a+2b+c,ÔòMµÄȡֵ·¶Î§ÊÇ . 2 ͼK14-4 -x2+2x(x>0), 9.[2019¡¤ÑŰ²]ÒÑÖªº¯Êýy={µÄͼÏóÈçͼK14-5Ëùʾ,ÈôÖ±Ïßy=x+mÓë¸ÃͼÏóÇ¡ÓÐÈý¸ö²»Í¬µÄ -x(x¡Ü0)½»µã,ÔòmµÄȡֵ·¶Î§Îª . ͼK14-5 10.[2019¡¤´ïÖÝ]ÈçͼK14-6,Å×ÎïÏßy=-x+2x+m+1(mΪ³£Êý)½»yÖáÓÚµãA,ÓëxÖáµÄÒ»¸ö½»µãÔÚ2ºÍ3Ö®¼ä,¶¥µãΪB. ¢ÙÅ×ÎïÏßy=-x+2x+m+1ÓëÖ±Ïßy=m+2ÓÐÇÒÖ»ÓÐÒ»¸ö½»µã;¢ÚÈôµãM(-2,y1),µãN2 2 12 ,y2,µãP(2,y3)Ôڸú¯Êýͼ 2 ÏóÉÏ,Ôòy1 ͼK14-6 11.[2019¡¤¾£ÃÅ]Å×ÎïÏß y=ax2+bx+c(a,b,cΪ³£Êý)µÄ¶¥µãΪP,ÇÒÅ×ÎïÏß¾¹ýµã A(-1,0),B(m,0),C(-2,n)(1 ¢Ùabc>0;¢Ú3a+c<0;¢Ûa(m-1)+2b>0;¢Üa=-1ʱ,´æÔÚµãPʹ¡÷PABΪֱ½ÇÈý½ÇÐÎ. ÆäÖÐÕýÈ·½áÂÛµÄÐòºÅΪ . 12.[2018¡¤»Æ¸Ô]ÒÑÖªÖ±Ïßl:y=kx+1ÓëÅ×ÎïÏßy=x-4x. (1)ÇóÖ¤:Ö±ÏßlÓë¸ÃÅ×ÎïÏß×ÜÓÐÁ½¸ö½»µã; (2)ÉèÖ±ÏßlÓë¸ÃÅ×ÎïÏßµÄÁ½½»µãΪA,B,OΪԵã,µ±k=-2ʱ,Çó¡÷OABµÄÃæ»ý. 13.ÈçͼK14-7,Å×ÎïÏßl:y=-2(x-t)(x-t+4)(³£Êýt>0)ÓëxÖá´Ó×óµ½ÓҵĽ»µãΪB,A,¹ýÏß¶ÎOAµÄÖеãM×÷ 1 2 MP¡ÍxÖá,½»Ë«ÇúÏßy=??(k>0,x>0)ÓÚµãP,ÇÒOA¡¤MP=12. (1)ÇókµÄÖµ; (2)µ±t=1ʱ,ÇóABµÄ³¤,²¢ÇóÖ±ÏßMPÓëÅ×ÎïÏßlµÄ¶Ô³ÆÖáÖ®¼äµÄ¾àÀë; (3)°ÑÅ×ÎïÏßlÔÚÖ±ÏßMP×ó²à²¿·ÖµÄͼÏó(º¬ÓëÖ±ÏßMPµÄ½»µã)¼ÇΪG,ÓÃt±íʾͼÏóG×î¸ßµãµÄ×ø±ê. k ͼK14-7 14.[2019¡¤º¼ÖÝ]Éè¶þ´Îº¯Êýy=(x-x1)(x-x2)(x1,x2ÊÇʵÊý). (1)¼×ÇóµÃµ±x=0ʱ,y=0;µ±x=1ʱ,y=0;ÒÒÇóµÃµ±x=2ʱ,y=-2.Èô¼×ÇóµÃµÄ½á¹û¶¼ÕýÈ·,ÄãÈÏΪÒÒÇóµÃµÄ½á¹ûÕýÈ·Âð?˵Ã÷ÀíÓÉ. (2)д³ö¶þ´Îº¯ÊýͼÏóµÄ¶Ô³ÆÖá,²¢Çó¸Ãº¯ÊýµÄ×îСֵ(Óú¬x1,x2µÄ´úÊýʽ±íʾ). (3)ÒÑÖª¶þ´Îº¯ÊýµÄͼÏó¾¹ý(0,m)ºÍ(1,n)Á½µã(m,nÊÇʵÊý),µ±0 |ÍØÕ¹ÌáÉý| 15.[2018¡¤º¼ÖÝ]ËÄλͬѧÔÚÑо¿º¯Êýy=x+bx+c(b,cΪ³£Êý)ʱ,¼×·¢ÏÖµ±x=1ʱ,º¯ÊýÓÐ×îСֵ;ÒÒ·¢ÏÖ-1ÊÇ·½³Ìx+bx+c=0µÄÒ»¸ö¸ù;±û·¢ÏÖº¯ÊýµÄ×îСֵΪ3;¶¡·¢ÏÖµ±x=2ʱ,y=4,ÒÑÖªÕâËÄλͬѧÖÐÖ»ÓÐһλ·¢ÏֵĽáÂÛÊÇ´íÎóµÄ,Ôò¸ÃͬѧÊÇ ( ) A.¼× B.ÒÒ 2 2 2 11 1 C.±û D.¶¡ 16.ÈçͼK14-8Ëùʾ,½«¶þ´Îº¯Êýy=x-m(ÆäÖÐm>0)µÄͼÏóÔÚxÖáÏ·½µÄ²¿·ÖÑØxÖá·ÕÛ,ͼÏóµÄÆäÓಿ·Ö±£³Ö²»±ä,ÐγÉеÄͼÏó¼ÇΪy1,ÁíÓÐÒ»´Îº¯Êýy=x+bµÄͼÏó¼ÇΪy2,ÔòÒÔÏÂ˵·¨: (1)µ±m=1,ÇÒy1Óëy2Ç¡ºÃÓÐÈý¸ö½»µãʱ,bÓÐΨһֵΪ1; (2)µ±b=2,ÇÒy1Óëy2Ç¡ÓÐÁ½¸ö½»µãʱ,m>4»ò0 7 ͼK14-8 17.ÈçͼK14-9¢Ù,Å×ÎïÏßy=-x+mx+n½»xÖáÓÚµãA(-2,0)ºÍµãB,½»yÖáÓÚµãC(0,2). (1)ÇóÅ×ÎïÏߵĺ¯Êý±í´ïʽ; 2