(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线。
(三)、唯一性定理:
(1)过已知点,有且只能作一直线和已知平面垂直。 (2)过已知平面外一点,有且只能作一平面和已知平面平行。 (3)过两条异面直线中的一条能且只能作一平面与另一条平行。
四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)
(1)异面直线所成的角:通过直线的平移,把异面直线所成的角转化为平面内相交直线所成的角。异面直线所成角的范围:0o???90o;
(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为0o; ②线面垂直:线面所成的角为90o;
③斜线与平面所成的角:范围0o???90o;即也就是斜线与它在平面内的射影所成的角。
线面所成的角范围0o???90o (3)二面角:关键是找出二面角的平面角。方法有:①定义法;②三垂线定理法;③垂面法;
二面角的平面角的范围:0o???180o; 五、距离的求法:
(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长。求它们首先要找到表示距离的线段,然后再计算。
注意:求点到面的距离的方法:
①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上); ②转移法:转化为另一点到该平面的距离(利用线面平行的性质); ③体积法:利用三棱锥体积公式。
(2)线线距离:关于异面直线的距离,常用方法有:
9
①定义法,关键是确定出a,b的公垂线段;
②转化为线面距离,即转化为a与过b而平行于a的平面之间的距离,关键是找出或构造出这个平面;③转化为面面距离;
(3)线面、面面距离:线面间距离面面间距离与线线间、点线间距离常常相互转化;
六、常用的结论:
(1)若直线l在平面?内的射影是直线l?,直线m是平面?内经过l的斜足的一条直线,l与l? 所成的角为?1,l?与m所成的角为?2, l与m所成的角为?,则这三个角之间的关系是cos??cos?1cos?2;
(2)如何确定点在平面的射影位置:
①Ⅰ、如果一个角所在平面外一点到角两边距离相等,那么这点在平面上的射
影在这个角的平分线上;
Ⅱ、经过一个角的顶角引这个角所在平面的斜线,如果斜线和这个角的两边
夹角相等,那么斜线上的点在平面上的射影在这个角的平分线所在的直线上;
Ⅲ、如果平面外一点到平面上两点的距离相等,则这一点在平面上的射影在
以这两点为端点的线段的垂直平分线上。
②垂线法:如果过平面外一点的斜线与平面内的一条直线垂直,那么这一点
在这平面上的射影在过斜足且垂直于平面内直线的直线上(三垂线定理和逆定理);
③垂面法:如果两平面互相垂直,那么一个平面内任一点在另一平面上的射
影在这两面的交线上(面面垂直的性质定理);
④整体法:确定点在平面的射影,可先确定过一点的斜线这一整体在平面内的射影。
(3)在四面体ABCD中:
①若AB?CD,BC?AD,则AC?BD;且A在平面BCD上的射影是?BCD的垂心。
②若AB?AC?AD,则A在平面BCD上的射影是?BCD的外心。
③若A到BC,CD,BD边的距离相等,则A在平面BCD上的射影是?BCD的内心。
(4)异面直线上两点间的距离公式:若异面直线所成的角为?,它
们公垂线段AA'的长为d,在a,b上分别取一点E,F,设A'E?m,AF?n; 则EF?d?m?n?2mncos?
10
222E
A’ a
A
E’
? ? F
b (如果?E'AF为锐角,公式中取负号,如果?E'AF为钝,公式中取
正号)
11