目 录
1 绪 论 .................................................................... 1
1.1 课题背景 ............................................................. 1 1.2 总体要求 ............................................................ 1 1.3 具体要求 ............................................................ 1 1.4 设计思路 ............................................................ 1 1.5 温室大棚计算机控制的概况 ............................................ 1 2 系统组成与工作原理 ....................................................... 3
2.1 系统的硬件总体结构框图 .............................................. 3 2.2 系统的工作原理 ...................................................... 3 3 系统主要硬件电路模块设计 ................................................. 4
3.1 AT89C51单片机结构组成 .............................................. 4 3.2 AT89C51的复位电路 .................................................. 5 3.3 数据存储器的扩展 ..................................................... 6 3.4 八路温湿度采集电路 ................................................... 8 3.5 八路温湿度选择电路 ................................................... 9 3.6 单路温湿度处理电路 ................................................... 9 3.7 A/D转换电路 ........................................................ 10 3.8 电源稳压电路 ........................................................ 11 3.9 声光报警电路 ........................................................ 12 3.10 看门狗电路 ......................................................... 12 3.11 显示电路 ........................................................... 13 3.12 数字温湿度传感器DS1820和湿度检测电路 .............................. 15
3.12.1 DS1820 的主要特性 ............................................. 15 3.12.2 DS1820 内部结构 ............................................... 15 3.12.3 DS1820的工作原理 .............................................. 16 3.12.4 DS1820使用中注意事项 .......................................... 17 3.12.5 湿度检测电路 .................................................. 17 4 系统的软件设计 .......................................................... 18
4.1主程序模块设计 ...................................................... 18 4.2数据采集模块设计 .................................................... 18 4.3数据处理模块设计 .................................................... 19 4.4报警模块设计 ........................................................ 20 4.5显示模块设计 ........................................................ 20
结束语 ..................................................................... 21 致 谢 ..................................................................... 22 参考文献 ................................................................... 23 附 录 ..................................................................... 24
1 绪 论
1.1 课题背景
单片机自1976年由Intel公司推出MCS-48开始,迄今已有二十多年了。由于单片机集成度高、功能强、可靠性高、体积小、功耗低、使用方便、价格低廉等一系列优点,目前已经渗入到人们工作和生活的方方面面,单片机的应用领域已从面向工业控制、通讯、交通、智能仪表等迅速发展到家用消费产品、办公自动化、汽车电子、PC机外围以及网络通讯等广大领域。
单片机有两种结构:一种是在通用微型计算机中广泛采用的,程序存储器和数据存储器共用一个存储器空间的结构,称为“冯·诺依曼”结构。另一种是将程序存储器和数据存储器截然分开,分别寻址的结构,称为“哈佛”结构,目前的单片机采用此种结构较多。
本文介绍的分布式单总线温室大棚温湿度湿度自动控制系统,采用全数字化设计,直接监测每个棚内不同部分的温湿度,通过对温湿度的良好控制,有效地提高温室的产量。
1.2 总体要求
在此系统中,温度传感器获得所测环境中的检测温度信号,信号处理和放大后,由A/D转换器转换成数字信号进入单片机内部,显示于LED显示器上。单片机将给定的温度安全范围与测量的温度相比较,若测量温度在给定的温度安全范围则表明所测环境温度正常,各工作器件可在此环境中继续工作;若测量温度不在给定的温度安全范围内,则相应报警系统工作,发出报警,说明所测环境温度需要调整。同时此系统设有看门狗电路模块,可以防止程序在运行过程中“跑飞”,保证系统运行的稳定、可靠。
1.3 具体要求
本方案中整个系统由温度采集电路,温度选择电路,温度处理电路,A/D转换电路,单片机处理电路,声光报警电路,看门狗电路,显示电路等组成,软件选用汇编语言编程。 内容:
(1)安全温度范围为-30—50℃,最小区分度为1℃,标准温度≤1℃。 (2)温度控制的静态误差≤1℃。
(3)用十进制数码管动态显示所测环境温度。
(4)由于单片机无操作系统,若程序出现异常无法正常工作,故本系统采用了一个硬件看门狗来防止程序“跑飞”,保证系统运行的稳定、可靠。
1.4 设计思路
本设计采用单片机作为数据处理与控制单元,为了进行数据处理,单片机控制温度传感器经过处理的信号,把信号通过单总线传递到单片机上。单片机数据处理之后,发出控制信息改变报警和控制执行模块的状态,同时将当前温度信息发送到LED进行显示。本系统可以实现多路温度信号采集与显示,通过进行温度数据的运算处理,发出控制信号达到控制对象正常的目的。
1.5 温室大棚计算机控制的概况
现代化温室,通过传感器技术、微型计算机及单片机技术和人工智能技术,能自动测控温室的环境,其中包括温湿度、湿度、光照、浓度等,使作物在不适宜生长发育的反季节中,获得比室外生长更优的环境条件,达到早熟、优质、高产的目的。在农业种植问题中,温室环境与生物的生长、发育、能量交换密切相关,进行环境测控是实现温室生产管
1
理自动化、科学化的基本保证,通过对监测数据的分析,结合作物生长发育规律,控制环境条件,达到作物优质、高产、高效盼栽培目的。随着微机技术的发展,逐步采用配置灵活、开放式结构、运算能力较强、高可靠性、完善的开发手段及具有数据处理、统计分析、打印报表等功能的测控系统所代替,取得了较好的经济效益。随着国民经济的迅速增长,现代农业得到长足发展,受控农业的研究和应用技术越来越受到重视,特别是温室工程已成为工厂化高效农业的一个重要组成部分。支持温室工程的相关技术,如温室环境复杂系统的建模技术与专家决策支持系统、温室环境智能测控技术研究与系统开发、温室环境调配工程技术与设施研究等已成为当前该领域的关键技术和研究热点问题。研究温室环境信息进行模拟、分析、预测,研究开发基于作物成长栽培环境的温室环境多因子智能化综合测控系统,研究高效生产的温室环境综合测控模式与配套设施等将是今后主要研究内容。目前,我国农业正处在从传统农业向以优质、高效、高产为目的的现代化农业转化的新阶段。农业环境控制工程作为农业生物速生、优质、高产手段是农业现代化的标志,农业设施的自动检测与控制是我国急待发展的项目。应用自动控制和电子计算机实现农业生产和管理的自动化,是农业现代化的重要标志之一。近年来电子技术和信息技术的飞速发展,带来了温室控制与管理技术方面的一场革命,随着“设施农业”、“虚拟农业”等新名称的出现,“设施园艺”、“虚拟温室”的概念也应运而生。温室计算机控制与管理系统正在不断吸收自动控制和信息管理领域新的理论和方法,结合温室作物种植的特点,不断创新,逐步完善,从而使温室种植业实现真正意义上的现代化、产业化。国内外温室计算机控制技术的发展状况计算机的发展最早可以追溯到上个世纪的40年代,但将计算机用于环境控制则开始于20世纪60年代。20世纪80年代初诞生了第一批温室控制计算机,此后温室计算机控制及管理技术便率先在发达国家得到广泛应用,后来各发展中国家也都纷纷引进、开发出适合自己的系统。这在给各国带来巨大的经济效益的同时,也极大地推动了各国农业的现代化进程。
本文温湿度自动控制系统是针对温室大棚温湿度控制而设计,也可用于粮食仓储、冷库及烟叶发酵等场合的温湿度控制。塑料大棚是开发日光资源、充分利用太阳光能的主要形式之一,能避光、增产、保湿,为温室生长创造一个良好环境。温室大棚作为一个相对封闭的环境,其内部形成了一个小气候环境,良好的空气环境是温室正常生长的重要条件。为了增产、增收,要注意大棚内部的气体、温湿度和湿度3个重要因素。气体主要是指棚内的二氧化碳的含量。当空气中的二氧化碳浓度提高到0.1%时,可使温室的光合作用速率增加 1 倍以上,增产20%-80%;若使二氧化碳浓度降至0.005%时,光合作用几乎停止。温室生长的适宜温湿度为 20℃-30℃。大棚内白天增温快,当棚外平均气温为 15℃时,棚内可达 40℃-50℃。因此,要适时调节棚内温湿度,避免高温危害。塑料大棚经常处于密闭状态,蒸发量大大减小,内部湿度一般在80%-90%,湿度过大极易导致病虫害的发生。现在对大棚内气体、温湿度和湿度的有效调节,主要是通过适时的通风来实现。二氧化碳含量过大和湿度过大都会导致温湿度升高。通过调节温湿度可以有效地控制二者的浓度。本文介绍的分布式单总线温室大棚温湿度自动控制系统,采用全数字化设计,直接监测每个棚内不同部分的温湿度,通过对温湿度的良好控制,有效地提高温室的产量。
2