材料力学(填空、简答、判断、选择) 下载本文

87、梁的弯矩图为二次抛物线时,若分布载荷方向向上,则弯矩图为向下凸的抛物线。 88、弯矩图的凹凸方向可由分布载荷的正负符号确定。

89、在梁的某一段内,若无载荷的作用,则剪力图是平行于x轴的直线。

90、矩形截面梁的切应力是沿着截面高度按抛物线规律变化的,在中性轴上切应力为最大,且最大值为该截面上平均切应力的1.5倍。

91、梁在纯弯曲时,其横截面仍保持为平面,且与变形后的梁轴线相垂直;各横截面上的剪力等于零,而弯矩为常量。

92、梁在弯曲时的中性轴,就是梁的中性层与横截面的交线。它必然通过其横截面上的形心那一点。

93、梁弯曲时,其横截面的正应力按直线规律变化,中性轴上各点的正应力等于零,而距中性轴越远(填远或者近)正应力越大。以中性层为界,靠凹边的一侧纵向纤维受压力作用,而靠凸边的一侧纵向纤维受拉应力作用。

94、对于横截面高宽度比h:b?2的矩形截面梁,在当截面竖放时和横放时的抗弯能力(抗弯截面系数)之比为2。

95、面积相等的圆形、矩形和工字形截面的抗弯截面系数分别为W圆、W矩和W工,比较其值的大小,其结论应是W圆比W矩小,W工比W矩大。(填大或者小)

96、由弯曲正应力强度条件可知,设法降低梁内的最大弯矩,并尽可能提高梁截面的抗弯截面系数,即可提高梁的承能力。

97、工程上用的鱼腹梁、阶梯轴等,其截面尺寸随弯矩大小而变,这种截面变化的梁,往往就是近似的等强度梁。

98、等截面梁内的最大正应力总是出现在最大弯矩所在的横截面上。

99、若变截面梁的每一横截面上的最大正应力等于材料的许用应力,则称这种梁为等强度梁。 100、在平面弯曲的情况下,梁变形后的轴线将成为一条连续而光滑的平面曲线,此曲线被称为挠曲线。梁在平面弯曲变形时的转角,实际上是指梁的横截面绕其中性轴这条线所转动的角度,它近似地等于挠曲线方程w?f(x)对x的一阶导数。

101、横截面的形心在垂直梁轴线方向的线位移称为该截面的挠度,横截面绕中性轴转动的角位移称为该截面的转角;挠曲线上任意一点处切线的斜率,等于该点处横截面的转角。 102、根据梁的边界条件和变形的连续光滑条件,可以确定梁的挠度和转角的积分常数。 103、梁弯曲时的挠度和转角的符号,按所选的坐标轴而定,与w轴的正向一致时其挠度为正,若这时挠曲线的斜率为正,则该处截面的转角就为正。

104、梁的挠曲线近似微分方程确立了梁的挠度的二阶导数与弯矩、抗弯刚度之间的关系。梁弯曲时,如果梁的抗弯刚度愈大,则梁的曲率愈小,说明梁愈不容易变形。

105、用积分法求梁的变形在确定积分常数时,应根据梁的边界条件和变形连续光滑条件来确定积分常数。

106、由梁在单独载荷作用下的变形公式可知,变形和载荷的关系是线性的,故可用叠加原理求梁的变形.

107、在集中力作用下的梁,变形后的最大挠度与梁的跨度L的三次方成正比。

108、均布载荷作用下的简支梁,在梁长l变为原来的l/2时,其最大挠度将变为原来1/16。 109、一简支梁分在中点处作用一力偶,则其中点的挠度值为零。

110、受力构件内任意一点在各个截面上的应力情况,称为该点处的应力状态,在应力分析时常采用取单元体的研究方法。

111、表示构件内一点的应力状态时,首先是围绕该点截取一个边长趋于零的立方体作为分离体,然后给出此分离体各个面上的应力。

112、单元体截面上,若只有切应力而无正应力,则称此情况为纯剪切。

113、切应力等于零的截面称为主平面,主平面上的正应力称为主应力;各个面上只有主应力的单元体称为主单元体。

114、只有一个主应力不等于零的应力状态,称为单向应力状态,有二个主应力不等于零的应力状态,称为二向应力状态,三个主应力均不等于零的应力状态,称为三向应力状态。 115、通常将应力状态分为三类,其中一类,如拉伸或压缩杆件及纯弯曲梁内(中性层除外)各点就属于单向应力状态。

116、一铸铁直杆受轴向压缩时,其斜截面上的应力是均匀分布的。

117、在轴向拉伸直杆的斜截面上,有正应力也有切应力,切应力随截面方位不同而不同,而切应力的最大值发生在与轴线间的夹角为450的斜截面上;在正应力为最大的截面上切应力为零。

118、通过单元体的两个互相垂直的截面上的切应力,大小相等,方向共同指向或背离公共棱边。

119、用应力圆来寻求单元体斜截面上的应力,这种方法称为图解法。应力圆圆心坐标为 (?x??y2,0),半径为(?x??y22)2??xy。

120、材料破坏主要有流动破坏和断裂破坏两种类型。

121、构件在载荷作用下同时发生两种或两种以上的基本变形称为组合变形。

122、圆轴弯曲与扭转的组合变形,在强度计算时通常采用第三或第四强度理论。设M和TM2?T2为危险面上弯矩和扭矩,W为截面抗弯截面系数,则用第三强度理论表示为

WM2?0.75T2?[?]。 ≤[σ];第四强度理论表示为W123、压杆从稳定平衡状态过渡到不稳定的平衡状态,载荷的临界值称为临界载荷,相应的应力称为临界压力。

124、对于相同材料制成的压杆,其临界应力仅与柔度系数有关。 125、当压杆的应力不超过材料的比例极限时,欧拉公式才能使用。

126、临界应力与工作应力之比,称为压杆的工作稳定安全系数,它应该大于规定的安全系数。故压杆的稳定条件是nst?[nst]。

127、两端铰支的细长杆的长度系数为1;一端固支,一端自由的细长杆的长度系数为2。 128、压杆的临界应力随柔度变化的曲线,称为临界应力总图。

129、影响圆截面压杆的柔度系数(长细比)?的因素有长度、约束形式和截面几何性质。

二、简答题

1、试叙述本课程中对变形固体作出的几个基本假设。

答:本课程中对变形固体作出三个基本假设。

1.连续性假设:认为组成固体的物质不留空隙地充满了固体的体积。实际上,组成固体的粒子之间存在着空隙并不连续,但这种空隙的大小与构件的尺寸相比极其微小,可以不计。于是就认为固体在其整个体积内是连续的。这样,当把某些力学量看作是固体的点的坐标的函数时,对这些量就可以进行坐标增量为无限小的极限分析。

2.均匀性假设:认为在固体内到处有相同的力学性能。就使用最多的金属来说,组成金属的各晶粒的力学性能并不完全相同。但因构件或构件的任一部分中都包含为数极多的晶粒,而且无规则排列,固体的力学性能是各晶粒的力学性能的统计平均值,所以可以认为各部分的力学性能是均匀的。这样,如从固体中取出一部分,不论大小,也不论从何处取出,力学性能总是相同的。

3.各向同性假设:认为无论沿任何方向,固体的力学性能都是相同的。就金属的单一晶粒来说,沿不同的方向,力学性能并不一样。但金属构件包含数量极多的晶粒,且又杂乱无章地排列,这样,沿各个方向的力学性能就接近相同了。具有这种属性的材料称为各向同性材料,沿各方向的力学性质不同的材料称为各向异性材料。 2、试说明轴向拉伸和压缩的受力特点和变形特点。

答:轴向拉伸和压缩的受力特点和变形特点如下:

1)轴向拉伸和压缩的受力特点:作用于杆件上的外力(合力)是一对大小相等,方向相反,作用线与杆件的轴线重合的力。

2)轴向拉伸和压缩的变形特点:变形的结果使杆件伸长或缩短。 3、试述应用截面法计算构件内力的步骤。

答:截面法是材料力学中求内力的基本方法,是已知构件外力确定内力的普遍方法。应用截面法计算构件内力的步骤如下:

1) 假想截开:在需求内力的截面处,假想用一截面把构件截成两部分。

2) 任意留取:任取一部分为究研对象,将弃去部分对留下部分的作用以截面上的内力来代替。

3) 平衡求力:对留下部分建立平衡方程,求解内力。

4、什么叫变形固体?静力学中的“力的可传性原理”和“等效力系”概念是否也适用于变形体?为什么?

答:任何固体在外力作用下都会发生形状和尺寸的改变——即变形。因此,这些材料统称为变形固体。静力学中的力的可传性原理不适用于变形体。因为刚体不会变形,力对刚体的作用效应只是改变其运动状态,力对物体改变运动状态的效应只决定于力的大小、方向和作用线。因此,作用于刚体上的力的作用点位置已不再是决定力的效应的要素之一,代替它是的力的作用线。如果要考虑力对物体的变形效应则改变力的作用点将会改变物体的变形情况。因此,一般既要考虑物体的运动效应又要考虑变形效应时,力的三要素为力的大小、方向和作用点。

加减平衡力系原理也不能适用于变形体,只能适用于刚体。因为加减平衡力系原理指的是在已知力系上增加或减去任意平衡力系。不改变原力系对刚体的作用。力系对刚体只有运动效应,因此,在已知力系上增加或减去任意平衡力系不会改变其运动状态。力系对变形体作用的效应,除了运动效应外还在变形效应,在已知力系上增减平衡力系将会改变原力系对物体变形的作用效果。增减平衡力系改变了物体变形的作用效果,即增减平衡力系原理不适用于变形体。

5、连续性假设、均匀性假设、各向同性假设各指的是什么意思?

答:连续性假设:假设在固体所占有的空间内毫无空隙地充满了物质。实际上,组成固体的粒子之间存在空隙,但这种空隙极其微小,可以忽略不计。于是可认为固体在其整个体积内是连续的。基于连续性假设,固体内的一些力学量(例如点的位移)既可用连续函数表示,并可采用无穷小的高等数学分析方法研究。

均匀性假设:材料在外力作用下在强度和刚度方面所表现出的性能称为材料的力学性能。所谓的均匀性假设指材料的力学性能在各处都是相同的,与其在固体内的位置无关。即从固体内任意取出一部分,无论从何处取也无论取多少其性能总是一样的。

由此假设可以认为,变形固体均由同一均质材料组成,因而体内各处的力争性质都是相同的,并认为在其整个体积内毫无空隙地充满了物质。事实上,从固体的微观结构看,各种材料都是由无数颗粒(如金属中的晶粒)组成的,颗粒之间是有一定空隙的,而且各颗粒的性质也不完全一致。但由于材料力学是从宏观的角度去研究构件的强度、刚度和稳定性问题,这些空隙远远小于构件的尺寸,而且各颗粒是错综复杂地排列于整个体积内,因此,由统计平均值观点看,各颗粒性质的差异和空隙均可忽略不计,而认为变形固体是均匀连续的。 各向同性假设:即认为材料沿各个方向的力学性质是相同的。具有这种属性的材料称为各向同性材料。例如钢、铜、铸铁、玻璃等,而木材、竹和轧制过的钢材等,则为各向异性材料。但是,有些各向异性材料也可近似地看作是各向同性的。 6、什么叫内力?在材料力学中通常将什么统称为内力?

答:物体因受外力作用而变形,其内部各部分之间因相对位置改变而引起的相互作用就是内力。材料力学的内力,是指外力而引起的内力改变量,即“附加内力”。这样的内力随外力的产生而产生,随外力的增加而加大,达到某一限度时就会引起构件破坏,因而它与构件的强度是密切相关的。

7、低碳钢拉伸时,其变形过程分哪些阶段?