³¬¾­µäµÄÒòʽ·Ö½âÁ·Ï°ÌâÓд𰸠ÏÂÔØ±¾ÎÄ

Òòʽ·Ö½âÁ·Ï°Ìâ

Ò»¡¢Ìî¿ÕÌ⣺

2£®(a£­3)(3£­2a)=_______(3£­a)(3£­2a)£»

12£®Èôm2£­3m£«2=(m£«a)(m£«b)£¬Ôòa=______£¬b=______£»

15£®µ±m=______ʱ£¬x2£«2(m£­3)x£«25ÊÇÍêȫƽ·½Ê½£® ¶þ¡¢Ñ¡ÔñÌ⣺

1£®ÏÂÁи÷ʽµÄÒòʽ·Ö½â½á¹ûÖУ¬ÕýÈ·µÄÊÇ

A£®a2b£«7ab£­b£½b(a2£«7a) B£®3x2y£­3xy£­6y=3y(x£­2)(x£«1) C£®8xyz£­6x2y2£½2xyz(4£­3xy) D£®£­2a2£«4ab£­6ac£½£­2a(a£«2b£­3c) 2£®¶àÏîʽm(n£­2)£­m2(2£­n)·Ö½âÒòʽµÈÓÚ

A£®(n£­2)(m£«m2) B£®(n£­2)(m£­m2) C£®m(n£­2)(m£«1) D£®m(n£­2)(m£­1) 3£®ÔÚÏÂÁеÈʽÖУ¬ÊôÓÚÒòʽ·Ö½âµÄÊÇ

A£®a(x£­y)£«b(m£«n)£½ax£«bm£­ay£«bn B£®a2£­2ab£«b2£«1=(a£­b)2£«1 C£®£­4a2£«9b2£½(£­2a£«3b)(2a£«3b) D£®x2£­7x£­8=x(x£­7)£­8 4£®ÏÂÁи÷ʽÖУ¬ÄÜÓÃÆ½·½²î¹«Ê½·Ö½âÒòʽµÄÊÇ

A£®a2£«b2 B£®£­a2£«b2 C£®£­a2£­b2 D£®£­(£­a2)£«b2 5£®Èô9x2£«mxy£«16y2ÊÇÒ»¸öÍêȫƽ·½Ê½£¬ÄÇômµÄÖµÊÇ A£®£­12 B£®¡À24 C£®12 D£®¡À12 6£®°Ñ¶àÏîʽan+4£­an+1·Ö½âµÃ

A£®an(a4£­a) B£®an-1(a3£­1) C£®an+1(a£­1)(a2£­a£«1) D£®an+1(a£­1)(a2£«a£«1) 7£®Èôa2£«a£½£­1£¬Ôòa4£«2a3£­3a2£­4a£«3µÄֵΪ A£®8 B£®7 C£®10 D£®12

8£®ÒÑÖªx2£«y2£«2x£­6y£«10=0£¬ÄÇôx£¬yµÄÖµ·Ö±ðΪ

A£®x=1£¬y=3 B£®x=1£¬y=£­3 C£®x=£­1£¬y=3 D£®x=1£¬y=£­3 9£®°Ñ(m2£«3m)4£­8(m2£«3m)2£«16·Ö½âÒòʽµÃ

A£®(m£«1)4(m£«2)2 B£®(m£­1)2(m£­2)2(m2£«3m£­2) C£®(m£«4)2(m£­1)2 D£®(m£«1)2(m£«2)2(m2£«3m£­2)2 10£®°Ñx2£­7x£­60·Ö½âÒòʽ£¬µÃ

A£®(x£­10)(x£«6) B£®(x£«5)(x£­12) C£®(x£«3)(x£­20) D£®(x£­5)(x£«12) 11£®°Ñ3x2£­2xy£­8y2·Ö½âÒòʽ£¬µÃ

A£®(3x£«4)(x£­2) B£®(3x£­4)(x£«2) C£®(3x£«4y)(x£­2y) D£®(3x£­4y)(x£«2y) 12£®°Ña2£«8ab£­33b2·Ö½âÒòʽ£¬µÃ

A£®(a£«11)(a£­3) B£®(a£­11b)(a£­3b) C£®(a£«11b)(a£­3b) D£®(a£­11b)(a£«3b) 13£®°Ñx4£­3x2£«2·Ö½âÒòʽ£¬µÃ

A£®(x2£­2)(x2£­1) B£®(x2£­2)(x£«1)(x£­1)

C£®(x2£«2)(x2£«1) D£®(x2£«2)(x£«1)(x£­1) 14£®¶àÏîʽx2£­ax£­bx£«ab¿É·Ö½âÒòʽΪ

A£®£­(x£«a)(x£«b) B£®(x£­a)(x£«b) C£®(x£­a)(x£­b) D£®(x£«a)(x£«b)

15£®Ò»¸ö¹ØÓÚxµÄ¶þ´ÎÈýÏîʽ£¬Æäx2ÏîµÄϵÊýÊÇ1£¬³£ÊýÏîÊÇ£­12£¬ÇÒÄÜ·Ö½âÒòʽ£¬ÕâÑùµÄ¶þ´ÎÈýÏîʽÊÇ

A£®x2£­11x£­12»òx2£«11x£­12 B£®x2£­x£­12»òx2£«x£­12 C£®x2£­4x£­12»òx2£«4x£­12 D£®ÒÔÉ϶¼¿ÉÒÔ

16£®ÏÂÁи÷ʽx3£­x2£­x£«1£¬x2£«y£­xy£­x£¬x2£­2x£­y2£«1£¬(x2£«3x)2£­(2x£«1)2ÖУ¬²»º¬ÓÐ(x£­1)ÒòʽµÄÓÐ

A£®1¸ö B£®2¸ö C£®3¸ö D£®4¸ö 17£®°Ñ9£­x2£«12xy£­36y2·Ö½âÒòʽΪ

A£®(x£­6y£«3)(x£­6x£­3) B£®£­(x£­6y£«3)(x£­6y£­3) C£®£­(x£­6y£«3)(x£«6y£­3) D£®£­(x£­6y£«3)(x£­6y£«3) 18£®ÏÂÁÐÒòʽ·Ö½â´íÎóµÄÊÇ

A£®a2£­bc£«ac£­ab=(a£­b)(a£«c) B£®ab£­5a£«3b£­15=(b£­5)(a£«3)

C£®x2£«3xy£­2x£­6y=(x£«3y)(x£­2) D£®x2£­6xy£­1£«9y2=(x£«3y£«1)(x£«3y£­1) 19£®ÒÑÖªa2x2¡À2x£«b2ÊÇÍêȫƽ·½Ê½£¬ÇÒa£¬b¶¼²»ÎªÁ㣬ÔòaÓëbµÄ¹ØÏµÎª A£®»¥Îªµ¹Êý»ò»¥Îª¸ºµ¹Êý B£®»¥ÎªÏà·´Êý C£®ÏàµÈµÄÊý D£®ÈÎÒâÓÐÀíÊý 20£®¶Ôx4£«4½øÐÐÒòʽ·Ö½â£¬ËùµÃµÄÕýÈ·½áÂÛÊÇ

A£®²»ÄÜ·Ö½âÒòʽ B£®ÓÐÒòʽx2£«2x£«2 C£®(xy£«2)(xy£­8) D£®(xy£­2)(xy£­8) 21£®°Ña4£«2a2b2£«b4£­a2b2·Ö½âÒòʽΪ

A£®(a2£«b2£«ab)2 B£®(a2£«b2£«ab)(a2£«b2£­ab) C£®(a2£­b2£«ab)(a2£­b2£­ab) D£®(a2£«b2£­ab)2 22£®£­(3x£­1)(x£«2y)ÊÇÏÂÁÐÄĸö¶àÏîʽµÄ·Ö½â½á¹û

A£®3x2£«6xy£­x£­2y B£®3x2£­6xy£«x£­2y

C£®x£«2y£«3x2£«6xy D£®x£«2y£­3x2£­6xy 23£®64a8£­b2Òòʽ·Ö½âΪ

A£®(64a4£­b)(a4£«b) B£®(16a2£­b)(4a2£«b) C£®(8a4£­b)(8a4£«b) D£®(8a2£­b)(8a4£«b) 24£®9(x£­y)2£«12(x2£­y2)£«4(x£«y)2Òòʽ·Ö½âΪ

A£®(5x£­y)2 B£®(5x£«y)2 C£®(3x£­2y)(3x£«2y) D£®(5x£­2y)2 25£®(2y£­3x)2£­2(3x£­2y)£«1Òòʽ·Ö½âΪ

A£®(3x£­2y£­1)2 B£®(3x£«2y£«1)2 C£®(3x£­2y£«1)2 D£®(2y£­3x£­1)2 26£®°Ñ(a£«b)2£­4(a2£­b2)£«4(a£­b)2·Ö½âÒòʽΪ A£®(3a£­b)2 B£®(3b£«a)2 C£®(3b£­a)2 D£®(3a£«b)2 27£®°Ña2(b£«c)2£­2ab(a£­c)(b£«c)£«b2(a£­c)2·Ö½âÒòʽΪ A£®c(a£«b)2 B£®c(a£­b)2 C£®c2(a£«b)2 D£®c2(a£­b) 28£®Èô4xy£­4x2£­y2£­kÓÐÒ»¸öÒòʽΪ(1£­2x£«y)£¬ÔòkµÄֵΪ A£®0 B£®1 C£®£­1 D£®4 29£®·Ö½âÒòʽ3a2x£­4b2y£­3b2x£«4a2y£¬ÕýÈ·µÄÊÇ

A£®£­(a2£«b2)(3x£«4y) B£®(a£­b)(a£«b)(3x£«4y) C£®(a2£«b2)(3x£­4y) D£®(a£­b)(a£«b)(3x£­4y) 30£®·Ö½âÒòʽ2a2£«4ab£«2b2£­8c2£¬ÕýÈ·µÄÊÇ

A£®2(a£«b£­2c) B£®2(a£«b£«c)(a£«b£­c) C£®(2a£«b£«4c)(2a£«b£­4c) D£®2(a£«b£«2c)(a£«b£­2c) Èý¡¢Òòʽ·Ö½â£º 1£®m2(p£­q)£­p£«q£» 2£®a(ab£«bc£«ac)£­abc£» 3£®x4£­2y4£­2x3y£«xy3£»