Òòʽ·Ö½âÁ·Ï°Ìâ
Ò»¡¢Ìî¿ÕÌ⣺
2£®(a£3)(3£2a)=_______(3£a)(3£2a)£»
12£®Èôm2£3m£«2=(m£«a)(m£«b)£¬Ôòa=______£¬b=______£»
15£®µ±m=______ʱ£¬x2£«2(m£3)x£«25ÊÇÍêȫƽ·½Ê½£® ¶þ¡¢Ñ¡ÔñÌ⣺
1£®ÏÂÁи÷ʽµÄÒòʽ·Ö½â½á¹ûÖУ¬ÕýÈ·µÄÊÇ
A£®a2b£«7ab£b£½b(a2£«7a) B£®3x2y£3xy£6y=3y(x£2)(x£«1) C£®8xyz£6x2y2£½2xyz(4£3xy) D£®£2a2£«4ab£6ac£½£2a(a£«2b£3c) 2£®¶àÏîʽm(n£2)£m2(2£n)·Ö½âÒòʽµÈÓÚ
A£®(n£2)(m£«m2) B£®(n£2)(m£m2) C£®m(n£2)(m£«1) D£®m(n£2)(m£1) 3£®ÔÚÏÂÁеÈʽÖУ¬ÊôÓÚÒòʽ·Ö½âµÄÊÇ
A£®a(x£y)£«b(m£«n)£½ax£«bm£ay£«bn B£®a2£2ab£«b2£«1=(a£b)2£«1 C£®£4a2£«9b2£½(£2a£«3b)(2a£«3b) D£®x2£7x£8=x(x£7)£8 4£®ÏÂÁи÷ʽÖУ¬ÄÜÓÃÆ½·½²î¹«Ê½·Ö½âÒòʽµÄÊÇ
A£®a2£«b2 B£®£a2£«b2 C£®£a2£b2 D£®£(£a2)£«b2 5£®Èô9x2£«mxy£«16y2ÊÇÒ»¸öÍêȫƽ·½Ê½£¬ÄÇômµÄÖµÊÇ A£®£12 B£®¡À24 C£®12 D£®¡À12 6£®°Ñ¶àÏîʽan+4£an+1·Ö½âµÃ
A£®an(a4£a) B£®an-1(a3£1) C£®an+1(a£1)(a2£a£«1) D£®an+1(a£1)(a2£«a£«1) 7£®Èôa2£«a£½£1£¬Ôòa4£«2a3£3a2£4a£«3µÄֵΪ A£®8 B£®7 C£®10 D£®12
8£®ÒÑÖªx2£«y2£«2x£6y£«10=0£¬ÄÇôx£¬yµÄÖµ·Ö±ðΪ
A£®x=1£¬y=3 B£®x=1£¬y=£3 C£®x=£1£¬y=3 D£®x=1£¬y=£3 9£®°Ñ(m2£«3m)4£8(m2£«3m)2£«16·Ö½âÒòʽµÃ
A£®(m£«1)4(m£«2)2 B£®(m£1)2(m£2)2(m2£«3m£2) C£®(m£«4)2(m£1)2 D£®(m£«1)2(m£«2)2(m2£«3m£2)2 10£®°Ñx2£7x£60·Ö½âÒòʽ£¬µÃ
A£®(x£10)(x£«6) B£®(x£«5)(x£12) C£®(x£«3)(x£20) D£®(x£5)(x£«12) 11£®°Ñ3x2£2xy£8y2·Ö½âÒòʽ£¬µÃ
A£®(3x£«4)(x£2) B£®(3x£4)(x£«2) C£®(3x£«4y)(x£2y) D£®(3x£4y)(x£«2y) 12£®°Ña2£«8ab£33b2·Ö½âÒòʽ£¬µÃ
A£®(a£«11)(a£3) B£®(a£11b)(a£3b) C£®(a£«11b)(a£3b) D£®(a£11b)(a£«3b) 13£®°Ñx4£3x2£«2·Ö½âÒòʽ£¬µÃ
A£®(x2£2)(x2£1) B£®(x2£2)(x£«1)(x£1)
C£®(x2£«2)(x2£«1) D£®(x2£«2)(x£«1)(x£1) 14£®¶àÏîʽx2£ax£bx£«ab¿É·Ö½âÒòʽΪ
A£®£(x£«a)(x£«b) B£®(x£a)(x£«b) C£®(x£a)(x£b) D£®(x£«a)(x£«b)
15£®Ò»¸ö¹ØÓÚxµÄ¶þ´ÎÈýÏîʽ£¬Æäx2ÏîµÄϵÊýÊÇ1£¬³£ÊýÏîÊÇ£12£¬ÇÒÄÜ·Ö½âÒòʽ£¬ÕâÑùµÄ¶þ´ÎÈýÏîʽÊÇ
A£®x2£11x£12»òx2£«11x£12 B£®x2£x£12»òx2£«x£12 C£®x2£4x£12»òx2£«4x£12 D£®ÒÔÉ϶¼¿ÉÒÔ
16£®ÏÂÁи÷ʽx3£x2£x£«1£¬x2£«y£xy£x£¬x2£2x£y2£«1£¬(x2£«3x)2£(2x£«1)2ÖУ¬²»º¬ÓÐ(x£1)ÒòʽµÄÓÐ
A£®1¸ö B£®2¸ö C£®3¸ö D£®4¸ö 17£®°Ñ9£x2£«12xy£36y2·Ö½âÒòʽΪ
A£®(x£6y£«3)(x£6x£3) B£®£(x£6y£«3)(x£6y£3) C£®£(x£6y£«3)(x£«6y£3) D£®£(x£6y£«3)(x£6y£«3) 18£®ÏÂÁÐÒòʽ·Ö½â´íÎóµÄÊÇ
A£®a2£bc£«ac£ab=(a£b)(a£«c) B£®ab£5a£«3b£15=(b£5)(a£«3)
C£®x2£«3xy£2x£6y=(x£«3y)(x£2) D£®x2£6xy£1£«9y2=(x£«3y£«1)(x£«3y£1) 19£®ÒÑÖªa2x2¡À2x£«b2ÊÇÍêȫƽ·½Ê½£¬ÇÒa£¬b¶¼²»ÎªÁ㣬ÔòaÓëbµÄ¹ØÏµÎª A£®»¥Îªµ¹Êý»ò»¥Îª¸ºµ¹Êý B£®»¥ÎªÏà·´Êý C£®ÏàµÈµÄÊý D£®ÈÎÒâÓÐÀíÊý 20£®¶Ôx4£«4½øÐÐÒòʽ·Ö½â£¬ËùµÃµÄÕýÈ·½áÂÛÊÇ
A£®²»ÄÜ·Ö½âÒòʽ B£®ÓÐÒòʽx2£«2x£«2 C£®(xy£«2)(xy£8) D£®(xy£2)(xy£8) 21£®°Ña4£«2a2b2£«b4£a2b2·Ö½âÒòʽΪ
A£®(a2£«b2£«ab)2 B£®(a2£«b2£«ab)(a2£«b2£ab) C£®(a2£b2£«ab)(a2£b2£ab) D£®(a2£«b2£ab)2 22£®£(3x£1)(x£«2y)ÊÇÏÂÁÐÄĸö¶àÏîʽµÄ·Ö½â½á¹û
A£®3x2£«6xy£x£2y B£®3x2£6xy£«x£2y
C£®x£«2y£«3x2£«6xy D£®x£«2y£3x2£6xy 23£®64a8£b2Òòʽ·Ö½âΪ
A£®(64a4£b)(a4£«b) B£®(16a2£b)(4a2£«b) C£®(8a4£b)(8a4£«b) D£®(8a2£b)(8a4£«b) 24£®9(x£y)2£«12(x2£y2)£«4(x£«y)2Òòʽ·Ö½âΪ
A£®(5x£y)2 B£®(5x£«y)2 C£®(3x£2y)(3x£«2y) D£®(5x£2y)2 25£®(2y£3x)2£2(3x£2y)£«1Òòʽ·Ö½âΪ
A£®(3x£2y£1)2 B£®(3x£«2y£«1)2 C£®(3x£2y£«1)2 D£®(2y£3x£1)2 26£®°Ñ(a£«b)2£4(a2£b2)£«4(a£b)2·Ö½âÒòʽΪ A£®(3a£b)2 B£®(3b£«a)2 C£®(3b£a)2 D£®(3a£«b)2 27£®°Ña2(b£«c)2£2ab(a£c)(b£«c)£«b2(a£c)2·Ö½âÒòʽΪ A£®c(a£«b)2 B£®c(a£b)2 C£®c2(a£«b)2 D£®c2(a£b) 28£®Èô4xy£4x2£y2£kÓÐÒ»¸öÒòʽΪ(1£2x£«y)£¬ÔòkµÄֵΪ A£®0 B£®1 C£®£1 D£®4 29£®·Ö½âÒòʽ3a2x£4b2y£3b2x£«4a2y£¬ÕýÈ·µÄÊÇ
A£®£(a2£«b2)(3x£«4y) B£®(a£b)(a£«b)(3x£«4y) C£®(a2£«b2)(3x£4y) D£®(a£b)(a£«b)(3x£4y) 30£®·Ö½âÒòʽ2a2£«4ab£«2b2£8c2£¬ÕýÈ·µÄÊÇ
A£®2(a£«b£2c) B£®2(a£«b£«c)(a£«b£c) C£®(2a£«b£«4c)(2a£«b£4c) D£®2(a£«b£«2c)(a£«b£2c) Èý¡¢Òòʽ·Ö½â£º 1£®m2(p£q)£p£«q£» 2£®a(ab£«bc£«ac)£abc£» 3£®x4£2y4£2x3y£«xy3£»