³õÉý¸ßµÚ5½²¡ª¡ªº¯ÊýµÄÆæÅ¼ÐÔ
ÐÕÃû__________
ÌâÐÍÒ»£ºÅжϺ¯ÊýÆæÅ¼ÐÔ
.ÅжϺ¯ÊýÆæÅ¼ÐÔ¿ÉÒÔÖ±½ÓÓö¨Ò壬¶øÔÚijЩÇé¿öÏÂÅжÏf(x)?f(-x)ÊÇ·ñΪ0ÊÇÅжϺ¯ÊýÆæÅ¼ÐÔµÄÒ»¸öÖØÒª¼¼ÇÉ£¬±È½Ï±ãÓÚÅжϣ® Àý1ÅжÏÏÂÁк¯ÊýµÄÆæÅ¼ÐÔ£º
1¢Å y?£»
x¢Æ y?x4?x2?2£»
¢Ç y?x3?x£» ¢È y?x3?1£®
Àý2ÅжÏÏÂÁиùʽº¯ÊýµÄÆæÅ¼ÐÔ²¢ËµÃ÷ÀíÓÉ£º £¨1£©f(x)?(x?1)1?x 1?x£¨2£© f(x)?x?1?1?x£»
£¨3£©f(x)=
x2?1?x-1x?1?x+12
Àý3É躯Êýf(x)ºÍg(x)·Ö±ðÊÇRÉϵÄżº¯ÊýºÍÆæº¯Êý£¬ÔòÏÂÁнáÂÛºã³ÉÁ¢µÄÊÇ A£®f(x)+|g(x)|ÊÇżº¯Êý B£®f(x)-|g(x)|ÊÇÆæº¯Êý C£®|f(x)| +g(x)ÊÇżº¯Êý D£®|f(x)|- g(x)ÊÇÆæº¯Êý ¡¾±äʽѵÁ·¡¿
1ÅжÏÏÂÁк¯ÊýµÄÆæÅ¼ÐÔ£º
¢Åf(x)?x4£» ¢Æf(x)?x5£» ¢Çf(x)?x?
2ÅбðÏÂÁк¯ÊýµÄÆæÅ¼ÐÔ£º
£¨1£©f(x)?x2?5|x|£» £¨2£©f(x)?|x?1|?|x?1|£»£¨3£©f(x)?x2?x3.
11£» ¢Èf(x)?2£® xx3ÅжϺ¯Êýf(x)=
x2?1?x-1x?1?x+12µÄÆæÅ¼ÐÔ£®
4Èôº¯Êýf(x) £¨x?R£©ÊÇÆæº¯Êý£¬º¯Êýg(x) £¨x?R£©ÊÇżº¯Êý£¬Ôò£¨ £© A£®º¯Êýf[g(x)]ÊÇÆæº¯Êý B£®º¯Êýg[f(x)]ÊÇÆæº¯Êý
À´Ô´Ñ§¿ÆÍøZXXK]
C£®º¯Êýf(x)g(x)ÊÇÆæº¯Êý D£®º¯Êýf(x)+g(x)ÊÇÆæº¯Êý
ÌâÐͶþ£ºÀûÓú¯ÊýÆæÅ¼ÐÔ¿ÉÇóº¯Êý½âÎöʽ£®
Àý1Éèf(x)ÊÇRÉÏµÄÆæº¯Êý£¬ÇÒµ±x?[0,??)ʱ£¬f(x)?x(1?3x)£¬ÄÇôµ±x?(??,0)ʱ£¬f(x)=___________________
2Àý2ÒÑ֪żº¯Êýf(x)µÄ¶¨ÒåÓòΪR£¬µ±x¡Ý0ʱ£¬f(x)=x?3x-1£¬Çóf(x)µÄ½âÎöʽ£®
Àý3ÒÑÖªº¯Êýf(x)ΪRÉÏµÄÆæº¯Êý£¬ÇÒµ±x?0ʱf(x)?x(1?x)£®Çóº¯Êýf(x)µÄ½âÎöʽ£®
Àý4ÒÑÖªf(x)ÊÇÆæº¯Êý£¬g(x)ÊÇżº¯Êý²¢ÇÒf(x)?g(x)?x?1£¬ÔòÇóf(x)Óëg(x)µÄ±í´ïʽ£®
¡¾±äʽѵÁ·¡¿
1ÒÑÖªf(x)ÊÇżº¯Êý£¬x?0ʱ£¬f(x)??2x2?4x£¬Çóx?0ʱf(x)µÄ½âÎöʽÊÇ___________
2ÒÑÖªf(x)ÊǶ¨ÒåÓòΪRµÄÆæº¯Êý£¬µ±x?0ʱ£¬f(x)?x2?x?2£¬Çóf(x)µÄ½âÎöʽ.
3ÒÑÖªf(x)ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý. µ±x?0ʱ£¬f(x)?x2?4x£¬Ôò²»µÈʽf(x)?xµÄ½â¼¯ÓÃÇø¼ä±íʾΪ______________________
ax2?1(a,b,c?Z)ÊÇÆæº¯Êý,ÇÒf(1)?2,f(2)?3,Çóa,b,cµÄÖµ. 4ÒÑÖªº¯Êýf(x)?bx?c
5ÒÑÖªf(x)ÊÇÆæº¯Êý£¬g(x)ÊÇżº¯Êý£¬ÇÒf(x)?g(x)?
6
ÒÑÖª¶¨ÒåÔÚ
R
ÉÏµÄÆæº¯Êý
1£¬Çóf(x)¡¢g(x)£® x?1f?x?ºÍżº¯Êýg?x?Âú×ã
f?x??g?x??ax?a?x?2?a?0,ÇÒa?1?£¬Èôg?2??a£¬Ôòf?2??
A. 2 B.
ÌâÐÍÈý ÀûÓú¯ÊýÆæÅ¼ÐÔÇóº¯ÊýÖµ
17152 C. D. a
44a?2x?a?2Àý1 ÒÑÖªº¯Êýf(x)?2x?1(x?R)ÊÇÆæº¯Êý£¬ÔòaµÄֵΪ____________
Àý2ÒÑÖªf(x)ÎªÆæº¯Êý£¬g(x)?f(x)?9,g(?2)?3,Ôòf(2)? £® Àý3
¢Å Èôf(x)ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬Ôòf(0)=__________£»
¢ÆÈôf(x)ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬f(3)?2£¬ÇÒ¶ÔÒ»ÇÐʵÊýx¶¼ÓÐf(x?4)?f(x)Ôò
f(25)=__________£»
¢ÇÉ躯Êýy?f(x)(x?RÇÒx?0£©¶ÔÈÎÒâ·ÇÁãʵÊýx1,x2Âú×ãf(x1?x2)?f(x1)?f(x2)£¬Ôòº¯
Êýy?f(x)ÊÇ___________£¨Ö¸Ã÷º¯ÊýµÄÆæÅ¼ÐÔ£©
?)Àý4º¯Êýf(x)ÔÚRÉÏÓж¨Ò壬ÇÒÂú×ã¢Ùf(x)ÊÇżº¯Êý£»¢Úf(0)?2005£»¢Ûg(x)?f(x1ÊÇ
Ææº¯Êý£»Çóf(2005)µÄÖµ£®
¡¾±äʽѵÁ·¡¿ 1Èôº¯Êýf(x)?xÎªÆæº¯Êý£¬Ôòa= _____________________
(2x?1)(x?a)2ÒÑÖªy?f(x)ÊÇÆæº¯Êý£¬Èôg(x)?f(x)?2ÇÒg(1)?1£¬Ôòg(?1)? 3ÒÑÖªf£¨x£©?x2?ax3?bx?8ÇÒf(?2)?10,.Çóf(2).
4ÒÑÖªº¯Êýf(x)??2x3?x£®Èôx1¡¢x2¡¢x3?RÇÒx1?x2?0£¬x2?x3?0£¬x3?x1?0£®Ôòf(x1)?f(x2)?f(x3)£¨ £©£®
A£®´óÓÚÁã B£®Ð¡ÓÚÁã
C£®µÈÓÚÁã D£®´óÓÚÁã»òСÓÚÁã
x3?|x|?2x2?x5É躯Êýf(x)?µÄ×î´óֵΪM£¬×îСֵΪm£¬ÔòMÓëmÂú×㣨 £©£®
2x2?|x|A£®M?m?2 B£®M?m?4 C£®M?m?2 D£®M?m?4
¿Îºó×÷ÒµÁ·Ï°
1£®ÒÑÖªº¯Êýf£¨x£©£½ax£«bx£«c£¨a¡Ù0£©ÊÇżº¯Êý£¬ÄÇôg£¨x£©£½ax£«bx£«cx£¨ £© A£®Ææº¯Êý B£®Å¼º¯Êý C£®¼ÈÆæÓÖżº¯Êý D£®·ÇÆæ·Çżº¯Êý 2£®ÒÑÖªº¯Êýf£¨x£©£½ax£«bx£«3a£«bÊÇżº¯Êý£¬ÇÒÆä¶¨ÒåÓòΪ£Ûa£1£¬2a£Ý£¬Ôò£¨ £© A£®a?22
3
2
1£¬b£½0 B£®a£½£1£¬b£½0 C£®a£½1£¬b£½0 D£®a£½3£¬32
b£½0
3£®ÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬µ±x¡Ý0ʱ£¬f£¨x£©£½x£2x£¬Ôòf£¨x£©ÔÚRÉϵıí´ïʽÊÇ£¨ £©
A£®y£½x£¨x£2£© B£®y £½x£¨£üx£ü£1£© C£®y £½£üx£ü£¨x£2£© D£®y£½x£¨£üx£ü£2£©
4£®ÒÑÖªf£¨x£©£½x£«ax£«bx£8£¬ÇÒf£¨£2£©£½10£¬ÄÇôf£¨2£©µÈÓÚ£¨ £© A£®£26 B£®£18 C£®£10 D£®10 5£®º¯Êýf(x)?5
3
?x?1ÊÇ£¨
21?x?x?11?x2 £©
A£®Å¼º¯Êý B£®Ææº¯Êý C£®·ÇÆæ·Çżº¯Êý D£®¼ÈÊÇÆæº¯ÊýÓÖÊÇżº¯Êý
6£®Èô?(x)£¬g£¨x£©¶¼ÊÇÆæº¯Êý£¬f(x)?a??bg(x)?2ÔÚ£¨0£¬£«¡Þ£©ÉÏÓÐ×î´óÖµ5£¬Ôòf£¨x£©ÔÚ£¨£¡Þ£¬0£©ÉÏÓУ¨ £©
A£®×îСֵ£5 B£®×î´óÖµ£5 C£®×îСֵ£1 D£®×î´óÖµ£3 7£®º¯Êýf(x)?x?2?21?x2
2µÄÆæÅ¼ÐÔΪ________£¨ÌîÆæº¯Êý»òżº¯Êý£© £®
8£®Èôy£½£¨m£1£©x£«2mx£«3ÊÇżº¯Êý£¬Ôòm£½_________£® 9£®ÒÑÖªf£¨x£©ÊÇżº¯Êý£¬g£¨x£©ÊÇÆæº¯Êý£¬Èôf(x)?g(x)?Ϊ_______£®
10£®ÒÑÖªº¯Êýf£¨x£©ÎªÅ¼º¯Êý£¬ÇÒÆäͼÏóÓëxÖáÓÐËĸö½»µã£¬Ôò·½³Ìf£¨x£©£½0µÄËùÓÐʵ¸ùÖ®ºÍΪ________£®
11£®É趨ÒåÔÚ£Û£2£¬2£ÝÉϵÄżº¯Êýf£¨x£©ÔÚÇø¼ä£Û0£¬2£ÝÉϵ¥µ÷µÝ¼õ£¬Èôf£¨1£m£©£¼f£¨m£©£¬ÇóʵÊýmµÄȡֵ·¶Î§£®
11.ÒÑÖªº¯Êýf£¨x£©ÊÇÆæº¯Êý£¬ÇÒµ±x£¾0ʱ£¬f£¨x£©£½x£«2x¡ª1£¬Çóf£¨x£©ÔÚRÉϵıí´ïʽ£®
12.f£¨x£©ÊǶ¨ÒåÔÚ£¨£¡Þ£¬£5£Ý?£Û5£¬£«¡Þ£©ÉÏµÄÆæº¯Êý£¬ÇÒf£¨x£©ÔÚ£Û5£¬£«¡Þ£©Éϵ¥µ÷µÝ¼õ£¬ÊÔÅжÏf£¨x£©ÔÚ£¨£¡Þ£¬£5£ÝÉϵĵ¥µ÷ÐÔ£¬²¢Óö¨Ò司ÓèÖ¤Ã÷£®
3
2
1x?1£¬Ôòf£¨x£©µÄ½âÎöʽ