ÊýѧϵÊýѧÓëÓ¦ÓÃÊýѧ2009¼¶±¾¿Æ±ÏÒµÂÛÎÄ
??1a33a3??xdydz?ydxdz?zdxdy
? ???xdydz
? ?3222222[a-x-ydxdy?(?a-x-y)dxdy] 3????aDxyDxy6a3 ?Dxy??a2-x2-y2dxdy
623??a 3a3 ?4?
?8.2 ¼ÆËã??·Ö.
·ÖÎö£º?¹ØÓÚxoyÃæ¶Ô³Æ,¶øxyzÊǹØÓÚzµÄÆæº¯Êý,Âú×ã¡°·´¶ÔÆæ±¶¡±, ¹ÊÓÐ, ??2??xyzdxdy,ÆäÖÐ?ÊÇÇòÃæ:x?2?y2?z2?1µÄÍâ²à,λÓÚx?0,y?0µÄ²¿
??xyzdxdy
?1 ?2Dxy22xy1-x-ydxdy ???033 ??2sin?d??r1-rdr
01 ?2 152222ÆäÖÐ?1: z?1-x-y, (x,y)?Dxy?{(x,y)|x?y?1,x?0,y?0}
8.3[10] ¼ÆËã??22(x?yz)dydz?(y-xz)dxdz?2zdxdy,ÆäÖÐ?ÊÇ×¶Ãæ£º???z?1?x2?y2±»Æ½Ãæz?0Ëù½ØµÃµÄ²¿·Ö,È¡Éϲà.
·ÖÎö£º?? ???(x?2?yz)dydz?(y2-xz)dxdz?2zdxdy
22(x?yz)dydz?(y????-xz)dxdz???2zdxdy ??? ?0?0?2 ?2??zdxdy
?Dxy22(1?x?y)dxdy ?? ?2?2?0d??(1?r)rdr
01µÚ17Ò³ ¹²22Ò³
ÊýѧϵÊýѧÓëÓ¦ÓÃÊýѧ2009¼¶±¾¿Æ±ÏÒµÂÛÎÄ
?2? 3ÆäÖÐDxy?{(x,y)|x2?y2?1}
8.4[10] ¼ÆËã??xyz222r?x?y?z,ÆäÖÐ, ?ÊÇÇòÃæ£ºdydz?dxdz?dxdy333??rrr?x2?y2?z2?a2(a?0)µÄÍâ²à.
·ÖÎö£º¸ù¾Ý?µÄÂÖ»»¶Ô³ÆÐÔ,¿ÉÖª, ??3zdydz ??3?r ?6zdydz (·´¶ÔÆæ±¶) ??3?1r ?6Dxy??a2?x2?y2a3dxdy
?4?
8.5 Éè?ÊÇÇòÃæ£ºx?y?z?R,ÔÚÏÂÃæËÄ×é»ý·ÖÖÐ,ͬһ×éµÄÁ½¸ö»ý·Ö¾ùΪ0µÄÊÇ£º£¨C£©
2222A. ????x2ds, ????x2dydz
??B. ????xds, ????xdydz
??C. ????xds, ????x2dydz
??D. ????xyds, ????ydydz
??·ÖÎö£ºÓÉÓÚÇúÃæ?¹ØÓÚyozÆ½Ãæ¶Ô³Æ,±»»ýº¯Êý x,xy¹ØÓÚxÎªÆæº¯Êý,±»»ýº¯Êýx¹ØÓÚxΪżº¯Êý.¹ÊÓÐ, µÚÒ»ÐÍÇúÃæ»ý·Ö ??2??xds?0, ????xyds?0,
??2x??ds?? ??1222(x?y?z)ds ??3? ?µÚ¶þÐÍÇúÃæ»ý·Ö ??1442Rds??R 3??3???xdydz?0
?2µÚ18Ò³ ¹²22Ò³
ÊýѧϵÊýѧÓëÓ¦ÓÃÊýѧ2009¼¶±¾¿Æ±ÏÒµÂÛÎÄ
????xdydz?2?y?z2?R22??R2?y2?z2dydz?0
????ydydz?2?y2?x2?R2??R2?x2?z2dxdz?0
8.6 [6] Éè?ÊÇÇòÃæ£ºx2?y2?z2?1µÄÉϰ벿·Ö,ÔòÏÂÁдíÎóµÄÊÇ£º£¨B£©
A. ????x2dydz?0 B. ????xdydz?0
??C. ????y2dydz?0 D. ????ydydz?0
??·ÖÎö£ºÓÉÓÚÇúÃæ?¹ØÓÚyoz Ãæ¶Ô³Æ,±»»ýº¯Êýx¹ØÓÚxÎªÆæº¯Êý,±»»ýº¯Êýx,y,y¹ØÓÚxΪżº¯Êý.
22????x2dydz?0,????ydydz?0,????y2dydz?0
???????xdydz?2?y2?z2?R2??R2?y2?z2dydz?0
9.×ܽá
£¨1£©¶Ô³ÆµÄ¶ÔÏ󣺻ý·ÖÇø¼ä¶Ô³Æ,»ý·ÖÇøÓò¶Ô³Æ.
£¨2£©¹ØÓÚ¶Ô³ÆÐÔ,³ý¹ØÓÚÔµãºÍy?x¶Ô³ÆÍâ,¶¼×ñѹØÓÚ˶ԳÆË²»±äµÄÔÔò. £¨3£©±äÁ¿µÄÂÖ»»ÐÔÊÇÖ¸¶Ô³ÆµÄ¶ÔÏó?ÓÉf(x,y,z)?0±íʾ,Èô½«x,y,zµÄλÖñ任ºó,f(x,y,z)?0ÈÔÈ»±íʾ?.ÔÚÆäËûÊé¼®ºÍÏà¹Ø×ÊÁÏÖÐÌá¼°µÄx,y¾ßÓÐÏàͬµÄµØÎ»,x,y¾ßÓÐÑ»·ÐÔ¶¼ÊÇÕâÀïËùÖ¸µÄÂÖ»»ÐÔ.
£¨4£©µ±ÇÒ½öµ±»ý·ÖÇøÓò¶Ô³ÆÐÔÓë±»»ýº¯Êýf(x,y)ÆæÅ¼ÐÔͬʱ¾ß±¸²ÅÄÜʹÓñ¾ÎÄÖÐÌá¼°µÄ¶¨Àí.
£¨5£©f(x,y)¹ØÓÚx,yµÄÆæÅ¼ÐÔ,Ö»ÄÜ·Ö±ð¶ÔÒ»¸ö±äÁ¿À´¿¼ÂÇ,¶ø²»Äܽ«Á½¸ö±äÁ¿»ìÔÚÒ»ÆðÀ´¿¼ÂÇ.Èô¹ØÓÚxÖá¶Ô³Æ,¾ÍÒª¿¼ÂǹØÓÚyµÄÆæÅ¼ÐÔ,Èô¹ØÓÚyÖá¶Ô³Æ,¾ÍÒª¿¼ÂǹØÓÚxµÄÆæÅ¼ÐÔ. Èô¹ØÓÚxoyÃæ¶Ô³Æ,¾ÍÒª¿¼ÂDZ»»ýº¯Êý¹ØÓÚzµÄÆæÅ¼ÐÔÒÀ´ÎÀàÍÆ.
£¨6£©µÚ¶þÀàÇúÏß»ý·ÖºÍµÚ¶þÀàÇúÃæ»ý·ÖÈç¹û¹ØÓڶԳƶÔÏó·½ÏòÏà·´,ÄÇôËüÃǵĻý·Ö½áÂÛ¸ÕºÃÓëµÚÒ»ÀàÇúÏß»ý·ÖºÍµÚÒ»ÀàÇúÃæ»ý·Ö½áÂÛÏà·´.
¸ù¾ÝÒÔÉÏ×ܽá,¶Ô³ÆÐÔµÄÎÊÌâ±ãÄܺܺõı»Ó¦ÓÃ,ʹÊýѧ»ý·ÖµÄ¼ÆËã¹ý³ÌµÃµ½¼ò»¯.
²Î¿¼ÎÄÏ×£º
[1] Ã÷ÇåºÓÖø.Êýѧ·ÖÎöµÄ˼ÏëÓë·½·¨[M].¼ÃÄÏ£ºÉ½¶«´óѧ³ö°æÉç,2004.7£¨2006.9ÖØÓ¡£© [2] ÒóÎýÃùµÈ±àÖø.¸ßµÈÊýѧ£¨Ï²ᣩ[M].ÉϺ££º»ª¶«Àí¹¤´óѧ³ö°æÉç,2005.2(2007.6ÖØÓ¡)
µÚ19Ò³ ¹²22Ò³
ÊýѧϵÊýѧÓëÓ¦ÓÃÊýѧ2009¼¶±¾¿Æ±ÏÒµÂÛÎÄ
[3] ÎâÁ¼ÉµÈ±àÖø.Êýѧ·ÖÎöѧϰָµ¼Ê飨ϲᣩ[M].±±¾©£º¸ßµÈ½ÌÓý³ö°æÉç,2004.8
[4] ·Ñ¶¨»Ô,ÖÜѧʥ±àÑÝ.¼ªÃ×¶àÎ¬ÆæÊýѧ·ÖÎöϰÌ⼯Ìâ½â£¨µÚÈý°æ£©[M].¼ÃÄÏ£ºÉ½¶«¿ÆÑ§¼¼Êõ³ö°æÉç,2005.1£¨2005.3ÖØÓ¡£©
[5] ¹ËÇì·ï.¹ØÓÚÖØ»ý·Ö¡¢ÇúÏß»ý·Ö¡¢ÇúÃæ»ý·ÖµÄ¶Ô³ÆÐÔ¶¨ÀíµÄÓ¦ÓÃ[J].Öйú½ÌÓýÑо¿ÂÛ´Ô,2006
[6] ËÕº£¾ü.¶Ô³ÆÐÔÔÚ¶¨»ý·ÖÖеÄÓ¦ÓÃ[J].ËÄ´¨ÎÄÀíѧԺѧ±¨£¨×ÔÈ»¿ÆÑ§£©,2007.9,17(5) [7] ÕÔÔÆÃ·,ÀîÞ±. ¶Ô³ÆÐÔÔÚ»ý·ÖÖеÄÃîÓÃ[J].ºìºÓѧԺѧ±¨,2005.6,3(3) [8] ³£ºÆ.¶Ô³ÆÐÔÔÚ»ý·ÖѧÖеÄÓ¦ÓÃ[J].¸ßµÈÊýѧÑо¿,2011.3,14(2)
[9] ÓÚÄþÀö,Íõ¾².ÀûÓöԳÆÐÔ¼ÆËãÁ½ÀàÇøÃæ»ý·ÖʱµÄ²îÒìÎÊÌâ[J].רÌâÑо¿,2009.7
[10] Áõ¸£¹ó,³¿Éú.ÀûÓöԳÆÐÔ¼ÆËãµÚ¶þÀàÇúÏß»ý·ÖÓëÇúÃæ»ý·ÖµÄ·½·¨[J].Î人Àí¹¤´óѧѧ±¨,2006,30£¨6£©£º1069-1072
[11] Î÷±±¹¤Òµ´óѧ¸ßµÈÊýѧ½ÌÑÐÊÒ±à.¸ßµÈÊýѧѧϰ¸¨µ¼£ºÎÊÌâ¡¢½â·¨¡¢³£¼û´íÎóÆÊÎö[M].±±¾©£º¿ÆÑ§³ö°æÉç,2007
[12] κƽµÈ±àÖø.¸ßµÈÊýѧ¸´Ï°Ö¸µ¼[M].Î÷°²£ºÎ÷°²½»Í¨´óѧ³ö°æÉç,1999.11 [13] »ªÂÞ¸ýÖø.¸ßµÈÊýѧÒýÂÛ[M].ÉòÑô£º¿ÆÑ§³ö°æÉç.2003
[14] ÖìѧÑ׵ȱàÖø.Êýѧ·ÖÎö[M].±±¾©£º¸ßµÈ½ÌÓý³ö°æÉç,2007.4
[15] ÅáÀñÎÄ.Êýѧ·ÖÎöÖеĵäÐÍÎÊÌâÓë·½·¨[M].¸ßµÈ½ÌÓý³ö°æÉç,2006.4 [16]×Þ±¾ÌڵȱàÖø.¸ßµÈÊýѧ¸¨µ¼[M].±±¾©£º¿ÆÑ§¼¼ÊõÎÄÏ׳ö°æÉ磬1999.6
µÚ20Ò³ ¹²22Ò³
ÊýѧϵÊýѧÓëÓ¦ÓÃÊýѧ2009¼¶±¾¿Æ±ÏÒµÂÛÎÄ
Application of symmetry in the integral calculation
Abstract The symmetry is one of the important methods to solve mathematical problems. In integral calculus, it can make the integral calculation process simplified to make full use of symmetry of integral region and the parity of integrand. This paper illustrates the application of symmetry in definite integral, multiple integrals, curve integrals, and surface integrals in the calculation through summary theorem and its nature and with the aid of examples.
Key words definite integral multiple integrals curve integrals surface integrals
µÚ21Ò³ ¹²22Ò³