2019-2020中考数学模拟试题及答案 下载本文

18.分式方程

3?2xx?2+

2=1的解为________. 2?x19.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2a, a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算)

20.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=_____.

三、解答题

21.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:

(1)在这次调查中,一共调查了 名市民,扇形统计图中,C组对应的扇形圆心角是 °;

(2)请补全条形统计图;

(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.

22.垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整 (收集数据)

甲班15名学生测试成绩统计如下:(满分100分)

68,72,89,85,82,85,74,92,80,85,78,85,69,76,80 乙班15名学生测试成绩统计如下:(满分100分)

86,89,83,76,73,78,67,80,80,79,80,84,82,80,83 (整理数据)

按如下分数段整理、描述这两组样本数据 组别 班级 65.6~70.5 70.5~75.5 75.5~80.5 80.5~85.5 85.5~90.5 90.5~95.5 甲班 乙班 2 1 2 1 4 a 5 b 1 2 1 0 在表中,a= ,b= . (分析数据)

(1)两组样本数据的平均数、众数、中位数、方差如下表所示: 班级 甲班 乙班 平均数 80 80 众数 x 80 中位数 80 y 方差 47.6 26.2 在表中:x= ,y= .

(2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相关知识合格的学生有 人

(3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由.

23.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN. (1)求证:BM=MN;

(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.

24.如图,点D在以AB为直径的⊙O上,AD平分?BAC,DC?AC,过点B作⊙O的切线交AD的延长线于点E. (1)求证:直线CD是⊙O的切线. (2)求证:CD?BE?AD?DE.

25.已知抛物线y=ax2﹣

1x+c经过A(﹣2,0),B(0,2)两点,动点P,Q同时从原点出发3均以1个单位/秒的速度运动,动点P沿x轴正方向运动,动点Q沿y轴正方向运动,连接PQ,设运动时间为t秒 (1)求抛物线的解析式; (2)当BQ=

1AP时,求t的值; 3(3)随着点P,Q的运动,抛物线上是否存在点M,使△MPQ为等边三角形?若存在,请求出t的值及相应点M的坐标;若不存在,请说明理由.

【参考答案】***试卷处理标记,请不要删除

一、选择题 1.D 解析:D 【解析】 【分析】

求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可. 【详解】 ∵把A(∴A(

111,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=, 2x211,2),B(2,), 22∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB, ∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB, 即此时线段AP与线段BP之差达到最大,

设直线AB的解析式是y=kx+b, 把A、B的坐标代入得:

1?2=k?b??2, ?1?=2k?b??2解得:k=-1,b=

5, 25, 2∴直线AB的解析式是y=-x+当y=0时,x=即P(

5, 25,0), 2故选D. 【点睛】

本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.

2.C

解析:C 【解析】 【分析】

先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解. 【详解】

∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误; ∵反比例函数y=

的图象在第一、三象限,

∴ab>0,即a、b同号,

当a<0时,抛物线y=ax2-2x的对称轴x=<0,对称轴在y轴左边,故D错误; 当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误; C正确. 故选C. 【点睛】