解:
(x0,y0),则过原点的切线方程为设切点为
y?1x2x0?2,
(x0,y0)在切线上,带入切线方程,解得切点为x0?4,y0?2.-----3 由于点
过原点和点(4,2)的切线方程为 面积
y?x22-----------------------------3
s??2022(y?2?22y)dy=3-------------------3
2 或
s??20122xdx??(24122x?x?2)dx?223
222.设平面图形D由x?y?2x与y?x所确定,试求D绕直线x?2旋转一周所生成的旋转体的体积.
解: 法一:V?V1?V2
10???2?(1?1?y)dy???(2?y)2dy?2??10?2?21?1?y12?(y?1)2dy -------6
?0??11??1?2???(y?1)3??2?(?)0?43 --------3 ?43法二:V=
102??(2?x)(2x?x2?x)dx010
------------------ 5
?2??(2?x)2x?x2dx?2??(2x?x2)dx
14???(2?2x)2x?x2?22x?x2dx??03??3?2?41221???(2x?x)?2???1???04?3?321412????2????2??32323 ------------- 4
3. 设a?1,f(t)?a?at在(??,??)内的驻点为 t(a). 问a为何值时t(a)最小? 并求
最小值.
t解:
由f?(t)?atlna?a?0得t(a)?1?lnlna. lna --------------- 3
又由t?(a)?
lnlna?1?0得唯一驻点a?ee 2a(lna)------------3
当a?ee时,t?(a)?0;当a?ee时,t?(a)?0,于是a?ee为t(a)的极小值点.-----2
故
a?ee为t(a)的最小值点,最小值为t(ee)?1?lne1?1?.ee--------------1
五.证明题(7分)
1f(0)=f(1)?0,f()?1,2设函数f(x)在[0,1]上连续,在(0,1)内可导且
试证明至少存在一点??(0,1), 使得f?(?)=1.
证明:设F(x)?f(x)?x,F(x)在[0,1]上连续在(0,1)可导,因f(0)=f(1)=0,
有F(0)?f(0)?0?0,F(1)?f(1)?1??1,--------------- 2
1111111f()=1F()=f()-=1-=,[,1]2222在2上F(x)用零点定理, 又由2,知211F(1)F()=-?022根据,--------------- 2 11(,1)F(?)=0,??(,1)?(0,1)2可知在2内至少存在一点?,使得, F(0)=F(?)=0由ROLLE中值定理得 至少存在一点??(0,?)?(0,1)使得
F?(?)=0即f?(?)?1=0,证毕. --------------3