4.给出位错运动的点阵阻力与晶体结构的关系式。说明为什么晶体滑移通常发生在原子最密排的晶面和晶向。
5.对于面心立方晶体来说,一般要有5个独立的滑移系才能进行滑移。这种结论是否正确?请说明原因及此结论适用的条件。
6.什么是单滑移、多滑移、交滑移?三者滑移线的形貌各有何特征? 7.已知纯铜的{111}[110]滑移系的临界切应力rc为1 MPa,问;
(1) 要使(111)面上产生[101)方向的滑移,则在[001]方向上应施加多大的应力?
(2) 要使(111)面上产生[110]方向的滑移呢?
8.证明体心立方金属产生孪生变形时,孪晶面沿孪生方向的切应变为0.707。 9.试比较晶体滑移和孪生变形的异同点。
10. 用金相分析如何区分“滑移带”、“机械孪晶”、“退火孪晶”。 11. 试用位错理论解释低碳钢的屈服。举例说明吕德斯带对工业生产的影响及
防止办法。
12. 纤维组织及织构是怎样形成的?它们有何不同?对金属的性能有什么影响? 13. 简要分析加工硬化、细晶强化、固熔强化及弥散强化在本质上有何异同。 14. 钨丝中气泡密度(单位面积内的气泡个数)由100个/cm2增至400个/cm2时,
拉伸强度可以提高1倍左右,这是因为气泡可以阻碍位错运动。试分析气泡阻碍位错运动的机制和确定切应力的增值?r。 15. 陶瓷晶体塑性变形有何特点?
16. 为什么陶瓷实际的抗拉强度低于理论的屈服强度,而陶瓷的压缩强度总是
高于抗拉 强度?
18. 已知烧结氧化铝的孔隙度为5%时,其弹性模量为370 GPa,若另一烧结氧
化铝的弹性模量为270 GPa,试求其孔隙度。
19. 为什么高聚物在冷拉过程中细颈截面积保持基本不变?将已冷拉高聚物加热
到它的玻理化转变温度以上时,冷拉中产生的形变是否能回复? 20. 银纹与裂纹有什么区别? 第七章
1.设计一种实验方法,确定在一定温度( T )下再结晶形核率N和长大线速度G (若N和G都随时间而变)。
2.金属铸件能否通过再结晶退火来细化晶粒?
3.固态下无相变的金属及合金,如不重熔,能否改变其晶粒大小?用什么方法可以改变?
4.说明金属在冷变形、回复、再结晶及晶粒长大各阶段晶体缺陷的行为与表现,并说明各阶段促使这些晶体缺陷运动的驱动力是什么。 5.将一锲型铜片置于间距恒定的两轧辊间轧制,如图7—4所示。
(1) 画出此铜片经完全再结晶后晶粒大小沿片长方向变化的示意图; (2) 如果在较低温度退火,何处先发生再结晶?为什么?
6.图7—5示出。—黄铜在再结晶终了的晶粒尺寸和再结晶前的冷加工量之间的关系。图中曲线表明,三种不同的退火温度对晶粒大小影响不大。这一现象与通常所说的“退火温度越高,退火后晶粒越大”是否有矛盾?该如何解释? 7.假定再结晶温度被定义为在1 h内完成95%再结晶的温度,按阿累尼乌斯
QgQn
??
RT(Arrhenius)方程,N=N0exp(),G=G0exp(RT)可以知道,再结晶温
度将是G和向的函数。
(1) 确定再结晶温度与G0,N0,Qg,Qn的函数关系; (2) 说明N0,G0,Qg,Q0的意义及其影响因素。
8.为细化某纯铝件晶粒,将其冷变形5%后于650℃退火1 h,组织反而粗化;增大冷变形量至80%,再于650℃退火1 h,仍然得到粗大晶粒。试分析其原因,指出上述工艺不合理处,并制定一种合理的晶粒细化工艺。 9.冷拉铜导线在用作架空导线时(要求一定的强度)和电灯花导线(要求韧性好)时,应分别采用什么样的最终热处理工艺才合适?
10. 试比较去应力退火过程与动态回复过程位错运动有何不同。从显微组织上如何区分动、静态回复和动、静态再结晶?
11. 某低碳钢零件要求各向同性,但在热加工后形成比较明显的带状组织。请提出几种具体方法来减轻或消除在热加工中形成带状组织的因素。 12. 为何金属材料经热加工后机械性能较铸造状态为佳?
13. 灯泡中的钨丝在非常高的温度下工作,故会发生显著的晶粒长大。当形成横跨灯丝的大晶粒时,灯丝在某些情况下就变得很脆,并会在因加热与冷却时的热膨胀所造成的应力下发生破断。试找出一种能延长钨丝寿命的方法。 14. Fe-Si钢(Wsi为0.03)中,测量得到MnS粒子的直径为0.4?m,每1 mm2
内的粒子数为2×105个。计算MnS对这种钢正常热处理时奥氏体晶粒长大的影响(即计算奥氏体晶粒尺寸)。 15. 判断下列看法是否正确。
(1) 采用适当的再结晶退火,可以细化金属铸件的晶粒。
(2) 动态再结晶仅发生在热变形状态,因此,室温下变形的金属不会发生动
态再结晶。
(3) 多边化使分散分布的位错集中在一起形成位错墙,因位错应力场的叠
加,使点阵畸变增大。
(4) 凡是经过冷变形后再结晶退火的金属,晶粒都可得到细化。 (5) 某铝合金的再结晶温度为320℃,说明此合金在320℃以下只能发生回
复,而在320℃以上一定发生再结晶。
(6) 20#钢的熔点比纯铁的低,故其再结晶温度也比纯铁的低。
(7) 回复、再结晶及晶粒长大三个过程均是形核及核长大过程,其驱动力均
为储存能。
(8) 金属的变形量越大,越容易出现晶界弓出形核机制的再结晶方式。 (9) 晶粒正常长大是大晶粒吞食小晶粒,反常长大是小晶粒吞食大晶粒。 (10) 合金中的第二相粒子一般可阻碍再结晶,但促进晶粒长大。 (11) 再结晶织构是再结晶过程中被保留下来的变形织构。
(12) 当变形量较大、变形较均匀时,再结晶后晶粒易发生正常长大,反之易
发生反常长大。
(13) 再结晶是形核—长大过程,所以也是一个相变过程。 第八章
1.分析固态相变的阻力。 2.分析位错促进形核的主要原因。
3.下式表示含n个原子的晶胚形成时所引起系统自由能的变化。
?G??bn(?Gv?Es)?an2/3??/?)
式中:?Gv —— 形成单位体积晶胚时的自由能变化;
γα/β —— 界面能; Es —— 应变能;
a、b —— 系数,其数值由晶胚的形状决定。
试求晶胚为球形时,a和b的值。若?Gv,γα/β,Es均为常数,试导出球状晶核的形核功?G*。