10(1+3i)22
∴a+b-3i(a+bi)=,
10∴a+b+3b-3ai=1+3i,
??a+b+3b=1,∴?
?-3a=3.?
2
2
2
2
??a=-1,
∴?
?b=0,?
??a=-1,
或?
?b=-3?
.
∴z=-1,或z=-1-3i. 18.解.答案:1. f'?x??1?2ax?b. x1?a?0由已知条件得{即{
f'?1??21?2a?b?2解得a??1,b?3.
2. f?x?的定义域为?0,???, 由1知f?x??x?x?3lnx.
2f?1??0设g?x??f?x???2x?2??2?x?x?3lnx,则
2g??x???1?2x??x?1??2x?3?. 3??xx当0?x?1时, g'?x??0;当x?1时, g'?x??0. 所以g?x?在?0,1?单调递增,在?1,???单调递减. 而g?1??0,故当x?0时, g?x??0,即f?x??2x?2.
19. (1)甲班成绩为87分的同学有2个,其他不低于80分的同学有3个“从甲班数学成绩不低于80分的同学中随机抽取两名同学”的一切可能结果组成的基本事件有C5=10个,
7112
“抽到至少有一个87分的同学”所组成的基本事件有C3C2+C2=7个,所以P=.
10(2)
2
优秀 不优秀 合计 甲班 6 14 20 乙班 14 6 20 合计 20 20 40 K=2
-
20×20×20×20
2=6.4>5.024,
因此,我们有97.5%的把握认为成绩优秀与教学方式有关. 12×(2+1)
20.解 (1)令n=2,∵a1=,∴S2=a2,
62
1
即a1+a2=3a2.∴a2=.
123×(3+1)
令n=3,得S3=a3,
21
即a1+a2+a3=6a3,∴a3=. 204×(4+1)
令n=4,得S4=a4,
21
即a1+a2+a3+a4=10a4,∴a4=.
30
1
(2)猜想an=,下面用数学归纳法给出证明.
(n+1)(n+2)11
①当n=1时,a1==,结论成立.
6(1+1)(1+2)1
②假设当n=k时,结论成立,即ak=,
(k+1)(k+2)则当n=k+1时,Sk=
k(k+1)k(k+1)
ak=·2
21k=,
(k+1)(k+2)2(k+2)
Sk+1=(k+1)(k+2)
ak+1,
2
(k+1)(k+2)
即Sk+ak+1=ak+1.
2∴
k(k+1)(k+2)
+ak+1=ak+1.
2(k+2)2
kk2(k+2)
∴ak+1=
(k+1)(k+2)
2
=
1
.
(k+2)(k+3)
= k(k+3)(k+2)-1
当n=k+1时结论成立.
由①②可知,对一切n∈N都有an=
*
1
. (n+1)(n+2)
21. (1)记“该学生考上大学”为事件A,其对立事件为A,则
34
P(A)=C14()()()+()=
12
3323236416112+=. 24381243
112131
∴P(A)=1-P(A)=1-=. 243243
(2)该生参加测试次数ξ的可能取值为2、3、4、5.
P(ξ=2)=()2=,
1319
P(ξ=3)=C1, 2···=
24P(ξ=4)=C1+=, 3··()·+()=
12
331313
1432713
2323
2341628278181
3
P(ξ=5)=C1. 4··()=
32
81
故ξ的分布列为
ξ 2 1 93 4 274 28 815 32 81P 19
427
2881
E(ξ)=2×+3×+4×+5×=32326. 8181
22.(1)函数f?x?的定义域为???,???,f??x??ex??x?1?ex?kx?xex?kx?xex?k, ①当k?0时,令f??x??0,解得x?0,所以f?x?的单调递减区间是???,0?,单调递增区间是?0,???,
②当0?k?1时,令f??x??0,解得x?lnk或x?0,
所以f?x?在???,lnk?和?0,???上单调递增,在?lnk,0?上单调递减, ③当k?1时,f??x??0,f?x?在???,??上单调递增,
④当k?1时,令f??x??0,解得x?0或x?lnk,所以f?x?在???,0?和?lnk,???上单调递增,在?0,lnk?上单调递减;
(2)f?0???1,①当0?k?1时,由(1)知,当x????,0?时,
??kk2 f?x??fmax?x??f?lnk???lnk?1?k?ln2k????lnk?1??1??0,此时f?x?无零点,
??22当x??0,???时,f?2??e?2k?e?2?0,
22又f?x?在?0,???上单调递增,所以f?x?在?0,???上有唯一的零点, 故函数f?x?在定义域???,???上有唯一的零点,
②当k?1时,由(1)知,当x????,lnk?时,f?x??fmax?x??f?0???1?0,此时f?x?无零点;
当x??lnk,???时,f?lnk??f?0???1?0,
22??kk?1k?1????k?1k?1f?k?1??ke??k?e??,
22????12t令g?t??e?t,t?k?1?2,则g??t??et?t,g???t??et?1,
2因为t?2,g???t??0,g??t?在?2,???上单调递增,g??t??g??2??e2?2?0,
所以g?t?在?2,???上单调递增,得g?t??g?2??e2?2?0,即f?k?1??0,所以f?x?在
?lnk,???上有唯一的零点,故函数f?x?在定义域???,???上有唯一的零点.
综全①②知,当k?0时函数f?x?在定义域???,???上有且只有一个零点.